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Genetic studies of type 1 diabetes (T1D) have identified  
50 susceptibility regions1,2, finding major pathways contributing 
to risk3, with some loci shared across immune disorders4–6. 
To make genetic comparisons across autoimmune disorders 
as informative as possible, a dense genotyping array, the 
Immunochip, was developed, from which we identified four 
new T1D-associated regions (P < 5 × 10−8). A comparative 
analysis with 15 immune diseases showed that T1D is more 
similar genetically to other autoantibody-positive diseases, 
significantly most similar to juvenile idiopathic arthritis and 
significantly least similar to ulcerative colitis, and provided 
support for three additional new T1D risk loci. Using a Bayesian 
approach, we defined credible sets for the T1D-associated SNPs. 
The associated SNPs localized to enhancer sequences active in 
thymus, T and B cells, and CD34+ stem cells. Enhancer-promoter 
interactions can now be analyzed in these cell types to identify 
which particular genes and regulatory sequences are causal.

T1D results from the autoimmune destruction of pancreatic β cells, 
leading to absolute dependence on exogenous insulin to regulate 
blood glucose levels7. In the present study, we designed and used the 
Immunochip, a custom Illumina Infinium high-density genotyping 
array, to (i) identify additional risk loci for T1D, (ii) refine mapping 
of T1D risk loci to their sets of most associated credible SNPs in 
order to (iii) analyze the locations of the credible SNPs with respect 
to regulatory sequences in tissues and cell types, and (iv) assemble 
summary genome-wide association study (GWAS) and Immunochip 

results from multiple immune diseases to allow comparisons of the 
genetic risk profiles of these diseases.

The T1D SNP and indel content selected for inclusion on the 
Immunochip was chosen on the basis of the 41 T1D-associated 
regions known at the time (February 2010)1 and 3,000 ‘wildcard’ 
SNPs that tagged candidate genes or other SNPs with suggestive evi-
dence of association (5 × 10−8 < P < 1 × 10−5) from GWAS of T1D.  
In parallel, we collected and curated all available association results 
for immune diseases for which the Immunochip was designed. To 
allow efficient comparison and downstream analysis by the research 
community, we created a publicly available, integrated, web-based 
portal (ImmunoBase; see URLs) containing complete association 
summary statistics that are available for querying, browsing or  
bulk download.

After data cleaning and quality control8,9, a total of 138,229 SNPs 
were scored in 6,670 T1D cases10, 6,523 controls from the British 
1958 Birth Cohort11, 2,893 controls from the UK National Blood 
Service12, 2,846 controls from the NIHR Cambridge Biomedical 
Research Centre Cambridge BioResource13, 2,601 Type 1 Diabetes 
Genetics Consortium (T1DGC) affected sibling pairs (ASPs)14 and 
69 T1DGC trio families. Case-control and family data were analyzed 
independently and combined by meta-analysis. We obtained evidence 
for T1D association in 44 regions at P ≤ 3.23 × 10−7 (Immunochip 
Bonferroni-corrected P < 0.05; Table 1). Thirty-eight of these are 
recognized T1D-associated regions (T1DBase and ImmunoBase), 
and four are newly identified regions (genome-wide P < 5 × 10−8): 
1q32.1 (index SNP rs6691977), 2q13 (rs4849135), 4q32.3 (rs2611215) 
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table 1 t1D-associated loci on the Immunochip

New Chromosome Position SNP Alleles MAF OR P Conditioning
Candidate 

gene(s) Previous index SNPs (r2)

1p13.2 114,377,568 rs2476601 G>A 0.09 1.89 <10−100 PTPN22 rs2476601 (1)

* 1q32.1 200,814,959 rs6691977 T>C 0.19 1.13 4.3 × 10−8 –

1q32.1 206,939,904 rs3024505 G>A 0.16 0.86 6.4 × 10−8 IL10 rs3024493 (1), rs3024505 (1)

2q11.2 100,764,087 rs13415583 T>G 0.35 0.90 1.1 × 10−7 AFF3 rs6740838 (0.32), rs9653442 (0.41)

* 2q13 111,615,079 rs4849135 G>T 0.29 0.89 4.4 × 10−8 –

2q24.2 163,110,536 rs2111485 G>A 0.39 0.85 3.8 × 10−18 IFIH1 rs1990760 (0.91)

2q24.2 163,124,637 rs35667974 T>C 0.02 0.59 9.3 × 10−9 rs2111485 IFIH1 rs1990760 (<0.1)

2q24.2 163,136,942 rs72871627 A>G 0.01 0.61 2.4 × 10−6 rs2111485, 
rs35667974

IFIH1 rs1990760 (0.0094)

2q33.2 204,738,919 rs3087243 G>A 0.45 0.84 7.4 × 10−21 CTLA4 rs3087243 (1), rs11571316 (<0.1)

3p21.31 46,457,412 rs113010081 T>C 0.11 0.85 4.6 × 10−8 CCR5 rs333 (0.34)

4q27 123,243,596 rs75793288 C>G 0.36 1.15 5.6 × 10−13 IL2, IL21 rs6827756 (0.98), rs4505848 (0.85)

* 4q32.3 166,574,267 rs2611215 G>A 0.15 1.18 1.8 × 10−11 –

* 5p13.2 35,883,251 rs11954020 C>G 0.39 1.11 4.4 × 10−8 IL7R –

6q15 90,976,768 rs72928038 G>A 0.17 1.20 6.4 × 10−14 BACH2 rs11755527 (0.194), rs597325 (0.13)

6q22.32 126,752,884 rs1538171 C>G 0.45 1.12 7.4 × 10−10 rs9375435 (0.96), rs9388489 (0.98)

7p12.2 50,465,830 rs62447205 A>G 0.28 0.89 2.5 × 10−8 IKZF1 rs10272724 (0.97)

7p12.1 51,028,987 rs10277986 A>T 0.04 0.76 1.4 × 10−7 rs4948088 (0.86), rs10231420 (<0.1)

9p24.2 4,290,823 rs6476839 A>T 0.40 1.12 1.0 × 10−9 GLIS3 rs10758593 (0.98), rs7020673 (0.66)

10p15.1 6,094,697 rs61839660 C>T 0.10 0.62 2.8 × 10−39 IL2RA rs7090530 (<0.1), rs12251307 (0.61)

10p15.1 61,08,340 rs10795791 A>G 0.41 1.16 5.6 × 10−11 rs61839660 IL2RA rs7090530 (<0.1), rs12251307 (<0.1)

10p15.1 6,129,643 rs41295121 C>T 0.01 0.49 4.9 × 10−8 rs61839660, 
rs10795791

IL2RA rs7090530 (<0.1), rs12251307 (<0.1)

10q23.31 90,035,654 rs12416116 C>A 0.28 0.85 3.9 × 10−15 rs10509540 (0.79)

11p15.5 2,182,224 rs689 T>A 0.30 0.42 <10−100 INS rs7111341 (0.265)

11p15.5 2,198,665 rs72853903 C>T 0.38 0.85 6.2 × 10−10 rs689 INS rs7111341 (0.26)

12p13.31 9,905,851 rs917911 A>C 0.36 1.10 1.9 × 10−7 CD69 rs4763879 (1), rs10492166 (0.470)

12q13.2 56,435,504 rs705705 G>C 0.34 1.25 4.4 × 10−32 IKZF4 rs2292239 (0.87), rs705704 (0.99)

12q24.12 112,007,756 rs653178 T>C 0.48 1.30 1.6 × 10−44 SH2B3 rs3184504 (0.99)

13q32.3 100,081,766 rs9585056 T>C 0.24 1.12 3.3 × 10−8 GPR183 rs9585056 (1)

14q32.2 98,488,007 rs1456988 T>G 0.27 1.12 2.9 × 10−8 rs4900384 (0.98)

14q32.2 101,306,447 rs56994090 T>C 0.41 0.88 1.1 × 10−11 rs941576 (0.91)

15q14 38,847,022 rs72727394 C>T 0.19 1.15 3.6 × 10−10 RASGRP1 rs12908309 (<0.1)

15q25.1 79,234,957 rs34593439 G>A 0.10 0.78 9.0 × 10−14 CTSH rs3825932 (0.26), rs12148472 (0.79)

16p11.2 28,505,660 rs151234 G>C 0.12 1.19 4.8 × 10−11 IL27 rs4788084 (0.1), rs9924471 (0.54)

16p13.13 11,194,771 rs12927355 C>T 0.32 0.82 3.0 × 10−22 DEXI rs12927355 (1), rs12708716 (0.86), 
rs12928822 (<1)

16p13.13 11,351,211 rs193778 A>G 0.25 1.14 4.4 × 10−10 DEXI rs12927355 (<0.1), rs12708716 
(0.069), rs12928822 (<0.1)

16q23.1 75,252,327 rs8056814 G>A 0.07 1.32 3.0 × 10−19 BCAR1 rs7202877 (0.86), rs8056814 (1)

17q12 38,053,207 rs12453507 G>C 0.49 0.90 1.0 × 10−8 IKZF3,  
ORMDL3, 
GSDMB

rs2290400 (0.97)

17q21.2 38,775,150 rs757411 T>C 0.36 0.90 1.1 × 10−7 CCR7 rs7221109 (0.95)

* 17q21.31 44,073,889 rs1052553 A>G 0.24 0.89 8.2 × 10−8 –

18p11.21 12,809,340 rs1893217 A>G 0.16 1.21 1.2 × 10−15 PTPN2 rs1893217 (1)

18p11.21 12,830,538 rs12971201 G>A 0.39 0.89 2.1 × 10−6 rs1893217 PTPN2 rs1893217 (0.13)

18q22.2 67,526,644 rs1615504 C>T 0.47 1.13 1.8 × 10−11 CD226 rs763361 (0.99)

19p13.2 10,463,118 rs34536443 G>C 0.04 0.67 4.4 × 10−15 TYK2 rs2304256 (<0.1)

19p13.2 10,469,975 rs12720356 A>C 0.09 0.82 3.7 × 10−7 rs34536443 TYK2 rs2304256 (0.26)

19q13.32 47,219,122 rs402072 T>C 0.16 0.87 4.7 × 10−8 rs425105 (0.98)

19q13.33 49,206,172 rs516246 T>C 0.49 0.87 5.2 × 10−14 FUT2 rs601338 (1)

20p13 1,616,206 rs6043409 G>A 0.35 0.88 3.0 × 10−10 rs2281808 (0.91)

21q22.3 43,825,357 rs11203202 C>G 0.33 1.16 1.2 × 10−15 UBASH3A rs11203203 (0.42)

* 21q22.3 45,621,817 rs6518350 A>G 0.18 0.88 9.6 × 10−8 ICOSLG –

22q12.2 30,531,091 rs4820830 T>C 0.38 1.14 1.2 × 10−12 rs5753037 (0.99)

22q12.3 37,587,111 rs229533 A>C 0.43 1.11 1.8 × 10−8 C1QTNF6,  
RAC2

rs229541 (0.98), rs229526 (0.39)

The most strongly associated SNP in a region is shown, together with the effect of the minor allele relative to the major allele. Where secondary associations were found, they are 
conditional on the SNPs shown in the column “Conditional”. For previously known loci, the r2 between our lead SNP and the previously reported index SNPs is shown. New loci  
(at P < 3.23 × 10−7) are indicated by an asterisk. Alleles are shown as major allele>minor allele. rs689 (11p15.5, INS) data were obtained from previous TaqMan genotyping. Named  
candidate genes are genes for which there was additional evidence that they might be causal or which encode proteins with known immune functions that are part of the immune 
pathways already identified as being involved in T1D pathogenesis. Because SNPs may alter enhancer sequences distant from the target gene, we have not named a gene (or a noncoding 
RNA) if the only evidence for a causal role was that the peak of SNP association lies in or very near a gene (unless the SNPs alter coding sequence or splicing signals in a potentially 
functional way). For example, RNLS at 10q23.31 has no established role in the immune system, and there is currently no specific functional data linking this gene to T1D etiology.
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and 5p13.2 (rs11954020). rs11954020 is close to the multiple sclero-
sis candidate immune response gene IL7R15. Two additional loci (at 
17q21.31 and 21q22.3) were marginally associated (P > 5 × 10−8), 
and, as we describe later, additional support for the 17q21.31 locus 
came from genome-wide significant association of the same SNP, 
rs1052553, with primary biliary cirrhosis (PBC)16.

At each of the 44 loci, we investigated whether additional SNPs 
were independently associated with T1D. Logistic regression analyses 
conditional on the most strongly associated SNP, or index SNP, in each 
region identified five loci with more than one independently associ-
ated SNP (Table 1). Four of these loci were already known to harbor 
more than one causal variant, but the fifth region, 11p15.5 (INS and 
INS-IGF2 candidate genes), was surprising as INS was the first non-
MHC (major histocompatibility complex) region to be discovered 
for T1D17, and the region has therefore been examined intensively.  
The likely causal candidate variants in this region were SNPs rs689 
(−23HphI), rs3842753 (c.1140A>C) and the 5′ variable-number  
tandem repeat (VNTR) polymorphism. In European-ancestry popu-
lations, these three sites are in near-perfect linkage disequilibrium 
(LD)18. SNPs rs689 and rs3842753 were assayed on the Immunochip, 
but both were eliminated after quality control. We integrated pre-
existing rs689 data with Immunochip data for the 6,670 UK GRID 
(UK Genetic Resource Investigating Diabetes) cases and 6,304 British 
1958 Birth Cohort controls and found rs689 to be the most strongly 
associated SNP. After conditioning on rs689, SNP rs72853903 still 
exhibited significant evidence for an independent association with 
T1D (P = 5.4 × 10−10; Table 1). We did not have sufficient data to 
integrate rs3842753 or the INS VNTR in these analyses, but rs689 is 
known to tag the VNTR precisely18. We note that annotation using 
VEP19 (Ensembl v75) identifies rs3842753 as an INS nonsynonymous 

SNP (encoding p.His77Pro). However, we found limited evidence for 
annotation of the transcript isoform, and rs3842753 is more likely to 
be a noncoding SNP in the 3′ UTR of INS.

Comorbidity between T1D and other immune-mediated diseases 
has been reported widely through epidemiological and clinical  
studies, but evidence for shared genetic etiology has not been 
assessed in a uniform manner across multiple diseases. We sought 
to compare the underlying genetic susceptibilities to T1D and 
each of 15 immune diseases curated in ImmunoBase (accessed  
13 February 2014). We first divided the densely mapped regions 
of the Immunochip into two sets according to whether there was 
published association with the index disease for that region. We then 
tested whether T1D single-SNP P values differed between the two 
sets of regions using a variant set enrichment method that accounts 
for LD between SNPs20 (Online Methods). A difference in P-value 
distributions indicated that T1D showed stronger (or weaker)  
association with a particular region according to association with 
the index disease.

This comparison clearly delineated diseases with characteristic  
autoantibodies (for example, juvenile idiopathic arthritis (JIA), rheu-
matoid arthritis and T1D) relative to autoinflammatory disorders  
(ulcerative colitis and Crohn’s disease; Fig. 1a and Table 2). We 
observed the strongest positive and negative enrichments with JIA 
(P = 2 × 10−13; Fig. 1b) and ulcerative colitis (P = 5.4 × 10−5; Fig. 1c),  
respectively. We note that the susceptibility loci for each disease 
remain incomplete, with the extent of the incompleteness varying 
across diseases. This limitation prevents us from drawing any conclu-
sion such as ‘T1D is more like rheumatoid arthritis than autoimmune 
thyroid disease’; however, individually significant results are likely 
to be valid representations of disease overlap. The overlap between 
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Figure 1 T1D Immunochip P-value enrichment 
analysis. (a) Plot showing z scores for densely  
typed regions against diseases curated in  
ImmunoBase. Diseases with positive z scores  
indicate evidence for overall genetic overlap with 
T1D, within densely typed regions accessible on 
the Immunochip. Diseases with negative scores  
indicate evidence for negative association.  
Each bar is labeled with the Wilcoxon rank-sum 
test P value and colored by disease autoantibody 
positive/negative status. The MHC region (chr. 6: 
25–35 Mb, GRCh37) was excluded from analysis. 
AA, alopecia areata; AS, ankylosing spondylitis;  
ATD, autoimmune thyroid disease; CEL, celiac  
disease; CRO, Crohn’s disease; JIA, juvenile 
idiopathic arthritis; MS, multiple sclerosis;  
NAR, narcolepsy; PBC, primary biliary cirrhosis; 
PSC, primary sclerosing cholangitis; PSO,  
psoriasis; RA, rheumatoid arthritis; SJO,  
Sjogren’s syndrome; SLE, systemic lupus  
erythematosus; UC, ulcerative colitis.  
(b,c) Plots showing P   ′ = min(−log(PT1D meta))  
for each densely typed region accessible on the 
Immunochip, excluding the MHC region and the 
sex chromosomes. Regions that overlap known  
T1D susceptibility regions are identified by blue 
bars, whereas yellow and pink bars show overlap 
with JIA and ulcerative colitis, respectively. Red  
bars denote shared overlap between T1D and  
focal disease. The y axis is truncated for clarity. 
Fully interactive versions of b and c, along with  
further supporting resources, are available at  
http://www.immunobase.org/poster/type-1-
diabetes-immunochip-study-onengut-gumuscu/.
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T1D and JIA was driven, in part, by shared loci (P < 1 × 10−20)  
at 1p13.2 (PTPN22), 12q24.11 (SH2B3) and 10p15.1 (IL2RA)  
(Fig. 1b,c), whereas, for ulcerative colitis, no shared loci reached this 
level of significance.

We exploited this pleiotropy to identify additional T1D associa-
tions. Previously, T1D was compared with celiac disease, and SNPs 
robustly associated (P < 5 × 10−8) with celiac disease and more weakly 
associated (5 × 10−8 < P < 1 × 10−4) with T1D were considered to 
be associated with T1D and vice versa5. Here we demonstrate that 
a SNP with P < 5 × 10−8 in any Immunochip disease study requires 
P < 1 × 10−5 for T1D to obtain a Bayesian posterior probability of 
T1D association >0.9, given that different Immunochip disease 
studies shared many control samples (Online Methods). Using this 
analysis, we identified 3 additional T1D-associated regions, bringing  
the number of known T1D susceptibility regions to 57: 14q24.1 
(rs911263), 17q21.31 (rs17564829) (which achieved Bonferroni- 
corrected but not genome-wide significance in the primary analysis) 
and 6q23.3 (rs17264332 and rs6920220) (Table 3).

The 6q23.3 region contains the well-recognized candidate gene 
TNFAIP3, linking T1D susceptibility with the proinflammatory tumor 
necrosis factor (TNF) pathway. The three genes most proximal to the 
index SNP in the 14q24.1 region (RAD51B, ZFP36L1 and ACTN1) do 
not provide obvious insights into the biology of T1D, nor do genes 

near the index SNPs in the three other regions: 
1q32.1 (CAMSAP2-GPR25-C1orf106), 2q13 
(ACOXL) and 4q32.3 (LINC01179-CPE-
TLL1). CPE encodes carboxypeptidase E, a 
protease active in the neuroendocrine system 
and therefore could be considered a candidate 
T1D-associated gene. The gene content of the 
17q21.31 (rs17564829) region, containing a 
1-Mb inversion polymorphism with several 
copy number variants21, is also not informa-
tive, although SPPL2C, encoding signal 
peptide peptidase–like 2C, could be consid-
ered a candidate gene. Antigen presentation 
and associated proteolysis is important in 
the autoimmune process in T1D, including 
processing of the major autoantigen, pre-
proinsulin, into peptide epitopes, some of 
which contain signal peptide amino acids22.

We surveyed the National Human Genomes 
Research Institute (NHGRI) GWAS catalog23 
to determine overlap of diseases or traits with 
the seven newly discovered loci. After remov-
ing diseases curated in ImmunoBase, we found 
that the 17q21.31 variant (rs17564829), in 
intron 1 of the MAPT gene (encoding microtu-

bule-associated protein τ), was in strong LD (r2 > 0.9) with the index SNP 
for several neurodegenerative diseases, including Parkinson disease. We 
also examined two expression quantitative trait locus (eQTL) data sets 
in relevant tissues24,25 for overlap with our seven newly identified T1D 
associations. SNP rs17564829 in the 17q21.31 region was associated with 
expression of NSF, KANSL1, ARHGAP27 and the RNA gene MGC57346. 
This region overlaps a set of haplotypes in high LD that incorporate 
duplication and inversion events21, complicating further interpretation. 
No other identified genes had strong functional candidacy.

It is well established that the SNPs showing the strongest associa-
tion with disease in any region are not necessarily the causal variants, 
owing to a combination of sampling variation and LD. Nevertheless, 
the dense coverage of the Immunochip increases the likelihood that 
causal variants are among the SNPs genotyped in the T1D-associated 
loci. Although putative causal variants cannot be identified without 
further experimentation, identification of the most strongly associ-
ated SNPs in each region allowed us to integrate the location of these 
SNPs and their flanking sequences with emerging knowledge of the 
regulatory sequences of the genome. Focusing on primary and con-
ditional signals in each of the 44 loci listed in Table 1, we used a 
Bayesian approach similar to that described previously6 to define the 
99% credible set of SNPs within which the causal variants are most 
likely to be present (Supplementary Table 1).

table 3 Pleiotropic SNPs associated with t1D

Index SNP Chr.
Position  

(bp) MAF Alleles
Index  

disease

Disease association T1D association Candidate 
gene(s) ReferenceOR P OR P

rs17264332a 6q23.3 138,005,515 0.22 A>G CEL 1.29 5.00 × 10−30 1.12 8.26 × 10−6 TNFAIP3 32

rs6920220a 6q23.3 138,006,504 0.22 G>A UC 1.16 1.40 × 10−21 1.12 7.26 × 10−6 TNFAIP3 33,34

rs6920220a 6q23.3 138,006,504 0.22 G>A RA 1.20 2.30 × 10−13 1.12 7.26 × 10−6 TNFAIP3 35

rs911263 14q24.1 68,753,593 0.29 T>C PBC 0.79 9.95 × 10−11 0.89 4.93 × 10−6 16

rs17564829b 17q21.31 44,006,601 0.195 T>C PBC 1.25 2.15 × 10−9 0.89 6.77 × 10−6 16

We show all genome-wide significant index SNPs for immune-mediated diseases15,32–35 that are in regions not associated with T1D at genome-wide significance but associated 
at P < 1 × 10−5 in the case-control analysis presented here. Shown are the index SNPs, diseases and the single-SNP association test statistics for each index disease and T1D. 
Chromosome positions are given according to GRCh37. Chr., chromosome; MAF, minor allele frequency; OR, odds ratio; CEL, celiac disease; UC, ulcerative colitis; RA, rheumatoid 
arthritis; PBC, primary biliary cirrhosis.
ars17264332 is in LD with rs6920220, r2 = 1. brs17564829 is in LD with rs1052553 in table 1, r2 = 0.99.

table 2 enrichment analysis of evidence for t1D association across densely genotyped 
non-MHC loci associated with other autoimmune or autoinflammatory diseases

Index disease
Associated  

regions

SNPs in regions Enrichment result

Disease  
associated

Not disease  
associated z P

Juvenile idiopathic arthritis 15 2,527 22,725 7.35 2.00 × 10−13

Areata alopecia 4 763 24,489 6.63 3.40 × 10−11

Primary sclerosing cholangitis 10 1,866 23,386 6.28 3.40 × 10−10

Rheumatoid arthritis 27 4,382 20,870 5.51 3.60 × 10−8

Primary biliary cirrhosis 16 2,289 22,963 5.26 1.50 × 10−7

Celiac disease 29 4,512 20,740 2.55 1.10 × 10−2

Autoimmune thyroid disease 9 1,622 23,630 2.50 1.20 × 10−2

Narcolepsy 2 217 25,035 1.49 1.40 × 10−1

Multiple sclerosis 57 8,312 16,940 1.15 2.50 × 10−1

Systematic lupus erythematosus 14 2,528 22,724 −0.23 8.10 × 10−1

Ankylosing spondylitis 21 3,103 22,149 −0.84 4.00 × 10−1

Sjogren’s syndrome 6 985 24,267 −1.29 2.00 × 10−1

Psoriasis 25 4,457 20,795 −2.22 2.60 × 10−2

Crohn’s disease 83 13,225 12,027 −2.61 9.10 × 10−3

Ulcerative colitis 58 9,336 15,916 −4.04 5.40 × 10−5

Immunochip densely mapped regions were assigned as associated or not associated with each index disease  
according to publications curated in ImmunoBase (accessed 13 February 2014). We then tested whether the  
distribution of T1D P values differed between these sets of regions. The numbers of SNPs that passed quality  
control in our T1D study in the two sets of regions are shown. A positive (negative) z score implies that T1D shows 
stronger (weaker) evidence of association in regions known to associate with the index disease.
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SNPs that were either nonsynonymous or missense (as annotated 
by VEP19 Ensembl v75) or that overlapped enhancer regions in the  
tissues that showed an enrichment for T1D-associated SNPs in Figure 2  
(Supplementary Data Set). Although credible SNP sets can be 
large, this filtering reduced their median size from 28 to 8 SNPs 
(Supplementary Fig. 1). We highlight 29 SNPs corresponding to 
12 regions for which the size of the filtered sets was relatively small  
(<5 SNPs) in Supplementary Table 2. The analyses did not 
identify any new candidate genes other than the known candi-
date causal genes containing high-confidence missense variants: 
PTPN22, IFIH1, CTSH, TYK2 and FUT2. Nevertheless, these 
analyses did identify SNPs that overlapped potential enhanc-
ers near CTSH, TYK2 and UBASH3A that are worthy of specific 
laboratory investigations. In addition, we identified candidate 
enhancer SNPs in four other regions (6q22.32, 7p12.1, 10q23.31 
and 16q23.1), none of which had obvious candidate genes (Table 1  
and Supplementary Data Set). Chromosome conformational cap-
ture can be used to directly determine the presence of physical 
interactions between promoters and potential enhancer sequences29 
in the most enriched primary cell types using our credible SNP 
variants. There was a discrete cluster of credible enhancer SNPs  
5′ of the functional candidate gene IL10 (Supplementary Data Set), 
yet this potential regulatory sequence could interact with the promoter  
of the adjacent candidate gene IL19 (or with both). Genome-wide 
analysis of promoter-enhancer interactions will help identify new 
candidate causal genes30,31. Notwithstanding the current lack of data 
on promoter-enhancer interactions, these analyses identify AFF3 
(2q11.2) and BCAR1 (16q23.1) as new candidate genes for T1D.

We used the set of credible SNPs to interrogate 15 chromatin 
states across 127 tissues derived from the Epigenomics Roadmap and 
Encyclopedia of DNA Elements (ENCODE) projects26. We observed a 
strong enrichment of SNPs in enhancer chromatin states in immuno-
logically relevant tissues (Fig. 2). Thymus, CD4+ and CD8+ T cells, B 
cells and CD34+ stem cells exhibited the strongest enrichment in more 
than one sample of each tissue or cell type. There was less evidence 
of enrichment in promoter sequences (Fig. 2), suggesting that vari-
ation in enhancer sequences is more relevant to T1D. Our Bayesian 
approach is more informative in selecting relevant SNPs than the 
conventional r2-based approach that focuses on SNPs showing r2 >0.8 
with index SNPs—the r2-based approach only identified enhancer 
enrichment in one subtype of CD4+ T cells (data not shown). Recently, 
an analysis of active gene enhancers across multiple tissues reported 
enrichment of T1D GWAS SNPs in promoters, not enhancers27. This 
difference could be attributable to the empirical technique used in 
defining enhancers or the focus of this analysis on enhancers in gen-
eral (rather than tissue-specific enhancers), a failure to adjust for 
potential confounding by minor allele frequency (MAF) or reliance 
on the r2-based approach rather than establishing a credible set of 
putatively causal SNPs. Our analyses found no evidence of enrichment 
in pancreatic islet enhancers, a result supported by a recent detailed 
analysis of pancreatic islets that found evidence for enrichment of 
GWAS signals for type 2 diabetes and fasting glucose levels in a subset 
of those enhancers but not T1D signals28.

We also investigated whether analysis of available chromatin state 
data and accompanying annotation could narrow our credible SNP 
lists and highlight certain genes and SNPs. We focused on credible 
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URLs. ImmunoBase, http://www.immunobase.org/; T1DBase, http://
www.t1dbase.org/; wgsea, http://cran.r-project.org/web/packages/wgsea/
index.html; Blood eQTL browser (data deposition 21 December 2012), 
http://genenetwork.nl/bloodeqtlbrowser/2012-12-21-CisAssociations
ProbeLevelFDR0.5.zip; NHGRI GWAS catalog (accessed 19 February 
2014), http://www.genome.gov/admin/gwascatalo.txt; Epigenomic 
Roadmap annotations, https://sites.google.com/site/anshulkundaje/
projects/epigenomeroadmap.

METhoDS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Immunochip data for UK GRID cases and for 
T1DGC ASP and trio families have been deposited in the database 
of Genotypes and Phenotypes (dbGaP) under accession phs000180.
v2.p2. Immunochip data for the British 1958 Birth Cohort, the 
UK National Blood Service and the NIHR Cambridge Biomedical 
Research Centre Cambridge BioResource have been deposited in 
the European Genome-phenome Archive (EGA) under accession 
EGAS00000000038.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS
This research uses resources provided by the Type 1 Diabetes Genetics Consortium, 
a collaborative clinical study sponsored by the National Institute of Diabetes and 
Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and 
Infectious Diseases (NIAID), the National Human Genome Research Institute 
(NHGRI), the National Institute of Child Health and Human Development 
(NICHD) and JDRF and supported by grant U01 DK062418 from the US National 
Institutes of Health. Further support was provided by grants from the NIDDK 
(DK046635 and DK085678) to P.C. and by a joint JDRF and Wellcome Trust grant 
(WT061858/09115) to the Diabetes and Inflammation Laboratory at Cambridge 
University, which also received support from the NIHR Cambridge Biomedical 
Research Centre. ImmunoBase receives support from Eli Lilly and Company. C.W. 
and H.G. are funded by the Wellcome Trust (089989). The Cambridge Institute for 
Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140).
 We gratefully acknowledge the following groups and individuals who provided 
biological samples or data for this study. We obtained DNA samples from the 
British 1958 Birth Cohort collection, funded by the UK Medical Research Council 
and the Wellcome Trust. We acknowledge use of DNA samples from the NIHR 
Cambridge BioResource. We thank volunteers for their support and participation 
in the Cambridge BioResource and members of the Cambridge BioResource  
Scientific Advisory Board (SAB) and Management Committee for their support 
of our study. We acknowledge the NIHR Cambridge Biomedical Research 
Centre for funding. Access to Cambridge BioResource volunteers and to their 
data and samples are governed by the Cambridge BioResource SAB. Documents 
describing access arrangements and contact details are available at http://www.
cambridgebioresource.org.uk/. We thank the Avon Longitudinal Study of Parents 
and Children laboratory in Bristol, UK, and the British 1958 Birth Cohort team, 
including S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton, 
for preparing and providing the control DNA samples. This study makes use 
of data generated by the Wellcome Trust Case Control Consortium, funded by 
Wellcome Trust award 076113; a full list of the investigators who contributed to the 
generation of the data is available from http://www.wtccc.org.uk/.

AUTHOR CONTRIBUTIONS
The study was conceptually designed by M.J.D., J.C.B., P.D., J.A.T., C.W., P.C. and 
S.S.R. The study was implemented by S.O.-G., E.F., H.S., N.M.W., P.D., T1DGC, 
J.A.T., C.W., P.C. and S.S.R. DNA samples were managed by S.O.-G., E.F. and 
H.S. Genotyping and laboratory quality control were conducted by S.O.-G., E.F. 
and P.D. Statistical quality control methods were implemented by W.-M.C., M.S., 
N.J.C., H.G. and J.C.M. Statistical analyses were performed by W.-M.C., A.R.Q., 
J.C.M., J.D.C., O.B., J.K.B., N.J.C., M.D.F. and C.W. Chromatin state analyses were 
conducted by O.B., L.D.W., A.K. and M.K. ImmunoBase is maintained by O.B., 
E.S. and P.A. The manuscript was written by S.O.-G., W.-M.C., A.R.Q., O.B., J.A.T., 
C.W., P.C. and S.S.R. All authors reviewed and contributed on the final manuscript. 

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 
40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).

2. Bradfield, J.P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts 
identifies multiple associated loci. PLoS Genet. 7, e1002293 (2011).

3. Virgin, H.W. & Todd, J.A. Metagenomics and personalized medicine. Cell 147, 
44–56 (2011).

4. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. 
PLoS Genet. 7, e1002254 (2011).

5. Smyth, D.J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac 
disease. N. Engl. J. Med. 359, 2767–2777 (2008).

6. Wellcome Trust Case Control Consortium. Bayesian refinement of association signals 
for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

7. Genuth, S. et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes 
Care 26, 3160–3167 (2003).

8. Manichaikul, A. et al. Robust relationship inference in genome-wide association 
studies. Bioinformatics 26, 2867–2873 (2010).

9. Price, A.L. et al. Principal components analysis corrects for stratification in genome-
wide association studies. Nat. Genet. 38, 904–909 (2006).

10. Todd, J.A. et al. Robust associations of four new chromosome regions from genome-
wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

11. Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child 
Development Study). Int. J. Epidemiol. 35, 34–41 (2006).

12. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases 
of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

13. Dendrou, C.A. et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA 
using a genotype-selectable human bioresource. Nat. Genet. 41, 1011–1015 (2009).

14. Concannon, P. et al. Genome-wide scan for linkage to type 1 diabetes in 2,496 
multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes 58, 
1018–1022 (2009).

15. Zhang, Z. et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) 
confer susceptibility to multiple sclerosis. Genes Immun. 6, 145–152 (2005).

16. Liu, J.Z. et al. Dense fine-mapping study identifies new susceptibility loci for primary 
biliary cirrhosis. Nat. Genet. 44, 1137–1141 (2012).

17. Bell, G.I., Horita, S. & Karam, J.H. A polymorphic locus near the human insulin 
gene is associated with insulin-dependent diabetes mellitus. Diabetes 33, 176–183 
(1984).

18. Barratt, B.J. et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. 
Diabetes 53, 1884–1889 (2004).

19. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl 
API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

20. Heinig, M. et al. A trans-acting locus regulates an anti-viral expression network and 
type 1 diabetes risk. Nature 467, 460–464 (2010).

21. Boettger, L.M., Handsaker, R.E., Zody, M.C. & McCarroll, S.A. Structural haplotypes and 
recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).

22. Kronenberg, D. et al. Circulating preproinsulin signal peptide–specific CD8 T cells 
restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 
1 diabetes and kill β-cells. Diabetes 61, 1752–1759 (2012).

23. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

24. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies 
cell type–specific master regulators and roles of HLA alleles. Nat. Genet. 44, 
502–510 (2012).

25. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of 
known disease associations. Nat. Genet. 45, 1238–1243 (2013).

26. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, 
conservation, and regulatory motif alterations within sets of genetically linked 
variants. Nucleic Acids Res. 40, D930–D934 (2012).

27. Andersson, R. et al. An atlas of active enhancers across human cell types and 
tissues. Nature 507, 455–461 (2014).

28. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes 
risk-associated variants. Nat. Genet. 46, 136–143 (2014).

29. Davison, L.J. et al. Long-range DNA looping and gene expression analyses identify DEXI 
as an autoimmune disease candidate gene. Hum. Mol. Genet. 21, 322–333 (2012).

30. Dryden, N.H. et al. Unbiased analysis of potential targets of breast cancer 
susceptibility loci by Capture Hi-C. Genome Res. 24, 1854–1868 (2014).

31. Hughes, J.R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution 
in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

32. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare 
variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

33. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture 
of inflammatory bowel disease. Nature 491, 119–124 (2012).

34. Anderson, C.A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk 
loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 
246–252 (2011).

35. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for 
rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

l e t t e r S
np

g
©

 2
01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.immunobase.org/
http://www.t1dbase.org/
http://www.t1dbase.org/
http://cran.r-project.org/web/packages/wgsea/index.html
http://cran.r-project.org/web/packages/wgsea/index.html
http://genenetwork.nl/bloodeqtlbrowser/2012-12-21-CisAssociationsProbeLevelFDR0.5.zip
http://genenetwork.nl/bloodeqtlbrowser/2012-12-21-CisAssociationsProbeLevelFDR0.5.zip
http://www.genome.gov/admin/gwascatalog.txt
https://sites.google.com/site/anshulkundaje/projects/epigenomeroadmap
https://sites.google.com/site/anshulkundaje/projects/epigenomeroadmap
http://www.nature.com/doifinder/10.1038/ng.3245
http://www.nature.com/doifinder/10.1038/ng.3245
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000180.v2.p2
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000180.v2.p2
https://www.ebi.ac.uk/ega/studies/EGAS00000000038
http://www.nature.com/doifinder/10.1038/ng.3245
http://www.cambridgebioresource.org.uk/
http://www.cambridgebioresource.org.uk/
http://www.wtccc.org.uk/
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


Nature GeNeticsdoi:10.1038/ng.3245

oNLINE METhoDS
Samples. ASP families were collected by the T1DGC from five geographic 
regions through four recruitment networks. Recruitment criteria for the  
families have been discussed previously36. A total of 6,808 T1D case sam-
ples were ascertained from the UK GRID cohort10. Control samples were 
obtained from the British 1958 Birth Cohort (n = 6,929)11 and the UK National 
Blood Services collection (n = 3,060)12 and the NIHR Cambridge Biomedical 
Research Centre Cambridge BioResource (n = 2,846)13. Many of these  
samples (98% of cases, 59% of controls and 57% of family samples) were also 
used in an earlier GWAS meta-analysis that initially identified many of the 
T1D-associated regions1. All samples included in this analysis have reported 
or self-declared European ancestry. All DNA samples were collected after 
approval from relevant institutional research ethics committees. Review boards 
of all contributing institutions approved all protocols and informed consent 
for sharing of data and sample collection; appropriate informed consent was 
obtained from all subjects and families.

Genotyping and quality control. Genotyping was performed using a custom  
high-density genotyping array, the Immunochip (Illumina), according to 
the manufacturer’s protocols. The Immunochip, a custom Illumina Infinium 
HD array, was designed to densely genotype, using 1000 Genomes Project  
data and any other available disease-specific resequencing data, immune-
mediated disease loci identified by common variant GWAS. The Immunochip 
Consortium selected 186 distinct loci containing markers meeting genome-
wide significance (P < 5 × 10−8) from 12 such diseases (autoimmune thyroid 
disease, ankylosing spondylitis, Crohn’s disease, celiac disease, IgA deficiency, 
multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, 
systemic lupus erythematosus, T1D and ulcerative colitis). All 1000 Genomes 
Project pilot phase37 CEU population variants (September 2009 release) within 
0.1-cM recombination blocks (HapMap 3 CEU) around the lead marker for 
each GWAS region were submitted for array design. No filtering on correlated 
variants (LD) was applied. Additional content included regional resequencing 
data (submitted by several groups) as well as a small proportion of investigator-
specific undisclosed content including intermediate GWAS results.

All individuals from T1DGC ASP and trio families (n = 11,584), T1D cases 
(n = 6,808) and British 1958 Birth Cohort controls (n = 5,452) were geno-
typed at the Genome Sciences Laboratory within the Center for Public Health 
Genomics at the University of Virginia. An additional 1,477 control samples 
from the British 1958 Birth Cohort, 2,846 samples from the NIHR Cambridge 
Biomedical Research Centre Cambridge BioResource and 3,060 UK National 
Blood Service samples were genotyped at the Wellcome Trust Sanger Institute. 
The Illumina GeneTrain2 algorithm was used to cluster genotypes.

Sample and SNP quality control analyses for the family data set and the 
case-control data set were performed separately. Initial sample quality control 
metrics included sample call rate, heterozygosity and concordance for reported 
versus genotyped sex. Relationship and population structure inference analy-
ses were performed, and the inferred relationship and population membership 
for each individual determined from the genetic data were compared to the 
self-reported pedigree and ancestry data (see sections on population inference 
and population structure for more details). A total of 34 cases, 192 controls 
and 20 individuals in T1DGC ASP families were removed for missing rate 
>5%. Approximately 2,000 SNPs on the X chromosome and Y chromosome 
were used to infer sex on the basis of the genetic data. Individuals with low X 
chromosome heterozygosity and a large number of Y-chromosome SNPs were 
defined as ‘males’; individuals with high X-chromosome heterozygosity and a 
small number of Y-chromosome SNPs were defined as ‘females’. Inconsistency 
between self-reported sex and genetically determined sex for any individual 
was considered an error in sex. From this analysis, 39 T1D cases, 79 controls 
and 59 individuals in T1DGC ASP families were removed. Samples with het-
erozygosity outside the range of 19–23.5% were removed, including 7 cases 
and 19 controls. A further 75 cases and 201 controls were removed for other 
reasons, comprising sample duplication, inability to map sample IDs to demo-
graphic information, relatedness (see below) and population structure. A total 
of 6,683 cases, 12,173 controls, 2,601 ASP families and 69 trio families (10,796 
total individuals) were used for analysis following quality control.

Monomorphic SNPs (~23,000) were identified and removed. A total of 527 
SNPs in cases, 2,405 SNPs in controls and 1,387 SNPs in T1DGC ASP and trio 

family data were rejected owing to failure to attain a genotyping rate of at least 
95%. An additional 618 SNPs in the case and control data were removed owing 
to a low genotyping rate at less frequent and rare variants (genotyping rate 
<99% for SNPs with MAF <1% or genotyping rate less than (1 − MAF) for SNPs 
with MAF <5%). In the case and control collections, 1,432 SNPs failed Hardy-
Weinberg equilibrium tests (with Hardy-Weinberg equilibrium P < 1 × 10−6)  
in controls, and 527 SNPs failed (with Hardy-Weinberg equilibrium  
P < 1 × 10−10) in cases. In the ASP families, 2,939 SNPs failed with mendelian 
inconsistency (MI) errors (with a standard MI error rate >0.5% or an adjusted 
MI error rate >5% for rare variants). A total of 163,924 SNPs passed quality 
control metrics in the case and control collections, and 164,643 SNPs passed 
quality control metrics in the families. Of these sets of SNPs, 154,939 SNPs 
overlapped and were used for initial analyses. The first iteration of identifying 
the best markers for dense regions produced a large number of markers with 
visually identified noisy signal clouds. As a result, further SNP quality control 
was undertaken, whereby the call rate cutoff was increased to 99% and the 
Hardy-Weinberg equilibrium cutoff was decreased to P < 1 × 10−4. A further 
8,349 SNPs were removed for lower call rate, 10,708 were removed for violation 
of Hardy-Weinberg equilibrium and 34 were removed for manually identified 
poor signal clouds. This strategy reduced the total number of SNPs analyzed to 
135,870 and produced top SNPs with much cleaner signal cloud data.

We observed inflation of test statistics across all SNPs that passed quality 
control (λ1,000 = 1.09), which was expected as the Immunochip was designed to 
target robustly defined immune-mediated disease susceptibility loci. Excluding 
SNPs from regions reported here, λ1000 was reduced to 1.07; excluding all 
densely genotyped regions reduced λ1000 to 1.03.

Relationship inference. Cryptic relatedness can confound the result of  
population structure and association analyses and can lead to inflated type I 
error rates. We used the relationship inference method that was implemented 
in KING8 to estimate the kinship coefficient between every pair of individu-
als on the basis of their SNP data. Because only SNPs for these two indi-
viduals were used when the kinship coefficient was estimated for a pair of  
individuals, the estimation accuracy was independent of the population  
structure for the entire data.

Twenty-two autosomes are well covered on the Immunochip array; thus, the 
SNP density provides sufficient power to correctly identify close relationships 
(first and second degree) with extremely low numbers of false positives (i.e., 
to separate unrelated pairs from close relatives)7. After cryptic relatedness  
was identified, pedigree errors were resolved by removing problematic  
individuals (within families) and/or by reconstructing the pedigree (both 
within and across families) incorporating the newly identified first- and  
second-degree relationships.

A total of 30 individuals were removed in family data owing to inconsistency 
between the estimated and documented relationships, and ~500 pairs of first-
degree relatives that were not reflected in the documented pedigree have been 
incorporated in the pedigree data by pedigree reconstruction. All pairwise rela-
tionships in families after quality control are shown in Supplementary Figure 2.  
The estimated kinship coefficient of each pair of relatives is plotted against 
the proportion of zero identity by state (IBS), with the documented relation-
ships being indicated by color. All 42 pairs of documented identical twins had 
estimated kinship coefficients >0.4. Among 16,292 documented first-degree 
relative pairs, 16,270 pairs had estimated kinship coefficients between 0.177 
and 0.36 (the criterion to be inferred as first-degree relatives in KING), 21 pairs 
had estimated kinship coefficients between 0.150 and 0.177, and 1 pair had an 
estimated kinship coefficient of 0.137. After pedigree reconstruction, there was 
no first-degree relatedness across any two families, and there were only three 
pairs of documented unrelated pairs with estimated kinship coefficients >0.1 
(all three kinship coefficients < 0.139). In the analyzed data, a total of 10,796 
individuals from 2,682 nuclear families had genotypes available. There were 
1,670 families with both parents available, 652 families with only one parent 
available and 360 individuals with neither parent available. The distribution 
of affected siblings was 69 families with 1 affected sibling, 2,490 families with  
2 affected siblings, 104 families with 3 affected siblings, 5 families with 4 
affected siblings and 2 families with 5 affected siblings.

In the T1D cases and the UK control data, 159 controls and 48 cases  
were removed for being close relatives. After this level of quality control, no 
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remaining ‘unrelated’ pairs in the case or control data had estimated kinship 
coefficients >0.09, indicating that all individuals were indeed unrelated. We 
also checked the UK T1D cases and UK controls for relatedness in the T1DGC 
ASP and trio family data set, as one of the four T1DGC collection sites was 
in the UK. A total of five pairs of individuals were identified with a genotype 
concordance rate >99.99%; the related individuals were selectively removed 
from the T1DGC family data set.

Population structure. We applied the principal-component analysis (PCA) 
method that is implemented in KING38 for the identification of the popula-
tion structure. We combined HapMap 3 data (1,097 unrelated individuals 
were used39, with 215 of European ancestry) with each cohort. We kept SNPs 
that were present on both the HapMap and Immunochip panels and removed 
SNPs with r2 >0.5 with other SNPs. After applying the quality control filters, 
~30,000 SNPs were used for the structure analysis. PCA was first carried out 
among the HapMap individuals only, and each Immunochip individual was 
then projected onto the space that was expanded by the principal compo-
nents of the HapMap individuals. The projected principal components for each 
individual sample represent its ancestry relative to the HapMap populations. 
Using this algorithm, we obtained the principal components for case-control 
individuals by cohort, projected onto either the entire HapMap 3 populations 
(Supplementary Fig. 3) or the European-ancestry populations only, including 
CEU and TSI (Supplementary Fig. 4); we also obtained the principal compo-
nents for individuals in the family data set (Supplementary Fig. 5).

The population structure of our case-control data is compared with that 
of all HapMap 3 populations in Supplementary Figure 3. A total of 69 indi-
viduals were identified as being greater than 3 s.d. from the average of the 
second principal component in European populations, and these outliers were 
excluded from analysis. The principal components of all case-control individu-
als from four cohorts (UK GRID and British 1958 Birth Cohort genotyped at 
the University of Virginia and British 1958 Birth Cohort and National Blood 
Service genotyped at the Wellcome Trust Sanger Institute) were in the range 
of the European-ancestry populations, clearly separated from non-European 
populations. Case-control individuals are compared with European popula-
tions only, including CEU and TSI, in Supplementary Figure 4. The cluster 
on the left is for CEU that represents northern Europeans, and the cluster on 
the right is for TSI, which represents southern Europeans. A total of 55 outliers 
were identified in this analysis clustering with the southern Europeans and 
were excluded before analysis. The results in Supplementary Figure 5 sug-
gest that there was no substructure difference between cases (UK GRID) and 
controls (British 1958 Birth Cohort) genotyped on the Immunochip at the 
University of Virginia with those controls (British 1958 Birth Cohort and UK 
National Blood Service) genotyped at the Wellcome Trust Sanger Institute. The 
population structure in the family data, in comparison to the HapMap popu-
lations, is shown in Supplementary Figure 5. Only individuals of European 
ancestry were used in the analysis.

SNP annotation. The chromosomal locations of the Immunochip SNPs were 
standardized to Build 37 (hg19) coordinates using the UCSC liftOver tool. For 
each variant, the SNP alleles have been normalized so that the reference and 
alternate alleles are reported on the reference (top) strand.

Single-SNP association analysis. To test the association between each SNP 
and T1D, we applied the Generalized Disequilibrium Test (GDT) method39 
to the T1DGC ASP and trio family data and fit a logistic regression to the 
T1D case and control data. We then combined the family and case-control 
data using meta-analysis.

The GDT method computes the genotype difference between all pairs of 
phenotypically discordant relatives within each family. This method uses the 
information from all discordant relative pairs, including data for nuclear fami-
lies that are not efficiently used in family-based tests such as the Transmission/
Disequilibrium Test (TDT) or the Family-Based Association Test (FBAT).  
To estimate the effect at each variant, we carried out a TDT at each region 
and approximated the OR of a variant by the transmission/non-transmission 
ratio at this region observed in parent–affected offspring trios. In the logistic 
regression model for T1D in the case-control data, association between T1D 
and an additive genotype score at each SNP was performed with adjustment 

for sex and regions in UK (12 dummy variables created for the 13 regions)40.  
The snp.rhs.estimates function from package snpS in R 3.0.2 was used  
for analysis41.

Meta-analysis. A weighted z score was used to combine results from the case-
control and family data42. An overall β coefficient and standard error were 
computed as the weighted average of the individual β statistics, and a corre-
sponding P value for that statistic was computed. Weights were proportional 
to the inverse variance (1 divided by the standard error squared) in each study 
and were scaled by the meta-variance ( )smeta

2  defined as follows 

s s smeta cc fam
2 2 21 1 1= +/( / / )

where scc
2  is the variance from the case-control series and s fam

2  is the variance 
from the family collection, so that the weights summed to 1. For the family 
data, instead of using the total number of family members, we used twice the 
number of parent–affected offspring trios as the effective sample size for the 
meta-analysis.

Conditional analysis to identify secondary signals. To determine whether 
additional SNPs within a region were significantly associated with T1D, 
independently of the most strongly associated SNP identified in the primary 
analysis, we performed conditional analysis using the case-control data. For 
each T1D region, the conditional analysis started with the SNP that was the 
most statistically significant as identified in the meta-analysis. A new logistic 
regression model was fitted to the case-control data, adjusting for the previ-
ously identified SNP as a covariate. We repeated this procedure until no SNPs 
in the region attained our threshold for statistical significance.

Overlap of T1D with other autoimmune diseases. For each disease in 
ImmunoBase, we downloaded the set of curated index SNPs (http://www.
immunobase.org/page/RegionsLanding; accessed 13 February 2014). We 
excluded inflammatory bowel diseases, as this is a combination of ulcerative 
colitis and Crohn’s disease, which are summarized individually. The MHC 
region (chr. 6: 25–35 Mb, GRCh37) was excluded from analysis. For each 
disease in turn, we used the index SNPs to label each densely mapped region 
of the Immunochip as associated or not with the index disease. After LD prun-
ing (r2 ≤ 0.95) to remove excessive correlation, distributions of T1D associa-
tion meta-analysis P values for SNPs were compared between the two sets or 
regions using a non-parametric Wilcoxon rank-score test, as implemented 
in the R package wgsea43. LD between SNPs inflates the variance of the test 
statistic, so we estimated this variance empirically under the null hypothesis 
of no association using 10,000 permutations of case versus control status. 
Given overall significant evidence of shared or disparate genetic architecture, 
we examined which loci were involved by summarizing the evidence for T1D 
association in a region using P = min(−log(P)) over all SNPs in a given densely 
genotyped region.

eQTL and GWAS catalog overlap in seven newly discovered regions. To 
define a query SNP set, we took a 2-Mb window centered on each newly 
discovered index SNP and then filtered out overlapping SNPs on the basis of 
an LD threshold of r2 ≥ 0.9 with the index SNP, using 1000 Genomes Project 
data. To identify potential cis eQTL overlap, we downloaded summary statis-
tics from Fairfax et al. (Table S7 in ref. 44) and Westra et al.25 (Blood eQTL 
browser; see URLs) and computed overlap with the query SNP set. For each 
significant overlap, we computed the LD with the top eQTL SNP for that 
probe or tissue, again using 1000 Genomes Project data. To look for trait or 
disease overlap outside the scope of ImmunoBase, we used the query SNP set 
to examine overlap with the NHGRI GWAS catalog23.

Credible sets of causal variants. For each index SNP (Table 1), we considered 
all SNPs within a 50-kb window and used the case-control data to compare 
models containing the index SNP i or each alternative SNP j using approximate 
Bayes factors, by the relationship

− = −2log( )ABF BIC BICij i j
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where ABFij is the approximate Bayes factor comparing models containing 
SNPs i and j, and BICi is the Bayesian information criterion (BIC) calculated 
from a logistic model of case/control status against SNP i. For simplicity, this 
analysis was performed using only the case-control cohort. For multiple-SNP 
models, we considered the conditional SNPs as fixed; for example, for chromo-
some 10p15.1, when considering rs10795791 as an index SNP and conditioning 
on rs61839660, we calculated BICs for the index model containing rs61839660 
and rs10795791 and for all alternative two-SNP models containing rs61839660 
and another SNP within a 50-kb window centered on rs10795791.

For any interval, we estimated the probability that any individual SNP j 
was the causal variant responsible for that signal (again, including conditional 
models, where appropriate) by the posterior probability

PP BIC sum BICj j j= / ( )

and we thus created a 99% credible set of SNPs as the smallest set of SNPs with 
total posterior probability ≥99%.

Enrichment analysis. Epigenomic Roadmap annotations were downloaded 
from the web portal. These were processed using R and Bioconductor pack-
ages to annotate the Immunochip SNPs overlapping tissue-specific functional 
elements. According to the credible sets formed above, the Immunochip SNPs 
that passed quality control could be divided into two sets: A, those that were 
in any credible set within densely mapped regions on the Immunochip, i.e., 
potential causal variants (n = 1,256); B, their complement within densely 
mapped regions on the Immunochip, i.e., variants unlikely to be causal  
(n = 78,692). We tested for enrichment of T1D signals in enhancers in each 
cell type in turn by forming a series of 2 × 2 contingency tables, stratified 
by a SNP’s MAF in controls (<0.05, <0.1, <0.2, <0.3, <0.4 or <0.5), showing  
the overlap of SNPs in sets A and B with functional elements according to 
physical location. The stratification was important to control for confounding, 
as both enhancer presence/absence and membership of a SNP in a credible set 
were associated with MAF. We used Cochran-Armitage tests, with the Mantel 
extension, to test for association. The sign of the score statistic determined 
the direction of association.

Filtering of credible SNPs. To create a filtered set of credible SNPs that could 
be targeted in future functional studies, we first expanded the sets by consid-
ering all neighboring SNPs in the 1000 Genomes Project CEU release that 
did not pass genotyping on the Immunochip. These 1000 Genomes Project 
SNPs were assigned to credible sets if the Immunochip SNP with which they 
showed the strongest LD, according to r2 value, was in a credible set. For each 
set, we calculated the size of the expanded credible set, the number of SNPs in 
the credible set that overlapped enhancers in tissues that showed enrichment 
according to Figure 2 and the number of SNPs that were nonsynonymous. 
These results are presented in Supplementary Table 1.

Evidence for T1D association conditional on genome-wide significant asso-
ciation in another autoimmune disease. Loci have previously been assigned 
as being associated with T1D on the basis of association P < 1 × 10−4 for a SNP 
that also showed association P < 5 × 10−8 in another autoimmune disease5. 
Here we explored the strength of evidence these thresholds provide, on the 
basis of previous work45. For any individual SNP and two diseases, there exist 
four hypotheses:

H0: The SNP is not associated with either disease.
H1: The SNP is associated with only disease 1.
H2: The SNP is associated with only disease 2.
H12: The SNP is associated with both disease 1 and disease 2.

Realistic prior probabilities45 are

π0 =  1–2 × 10−4 to 1 × 10−5

π1 =  1 × 10−4

π2 =  1 × 10−4

π12 =  1 × 10−5

which imply that we expect about 1 in 1,000 SNPs to show association  
with either disease and, of the SNPs associated with 1 disease, we expect 
about 1 in 10 to be associated with both diseases.

Posterior probabilities for independent data sets. We used the approximate 
Bayes factors presented previously46 to estimate φi, the Bayes factor for asso-
ciation with disease i compared to no association with disease i given only 
single-SNP P values and the MAF of the SNP in controls. If we assume that 
the case and control data sets for each disease are independent, they can be 
combined to calculate Bayes factors for each hypothesis.

BF0 = 1
BF1 = φ1

BF2 = φ2

BF12 = φ1φ2

Thus, the posterior probability for each hypothesis is given as

PP0 =  π0/B 
PP1 =  π1φ1/B
PP2 =  π2φ2/B 
PP12 =  π12φ1φ2/B

where B = 1 + φ1 + φ2 + φ12. The conditional probability of association with 
disease 2, given that we believe there is association with disease 1, is

PP PP PP PP21 12 1 12| /( ).= +

Effect of shared versus independent controls. The Immunochip Consortium 
genotyped a large sample of shared UK controls. This induces correlation 
between the P values from different diseases47, so BF12 cannot be expressed 
as a simple product of disease-specific Bayes factors. Methods to account for 
the effects from shared controls appear conservative47, as they do not allow for  
the reasonable assumption that related diseases share genetic susceptibility 
variants. Instead, we used simulation to explore the effect of non-independence  
on PP2|1. We used multinomial models and the approximate Bayes factor48 to 
properly estimate the posterior probabilities of each hypothesis.

To explore the effect of shared controls, we considered two general sce-
narios, relating the sample sizes available in the Wellcome Trust Case Control 
Consortium and the Immunochip reports (Supplementary Table 3). Using pi to 
denote the single-SNP P value for disease i, the results (Supplementary Fig. 6)  
show that, for independent controls, PP2|1 > 0.9 (median = 0.97) whenever 
p2 < 1 × 10−4. However, for shared controls, we cannot be as confident of 
association. PP2|1 is independent of p1, given that we believe the association 
with disease 1 is real. The number of cases for each disease has a relatively 
minor effect on PP2|1, whereas the MAF and the number of shared controls 
have slightly larger effects. Conditional posterior probabilities increase with 
MAF but decrease with an increasing number of shared controls. The strongest 
determinant is p2, with PP2|1 being in the interval 0.37–0.61 (median = 0.46)  
at p2 = 1 × 10−4 for all scenarios. When p2 = 1 × 10−5, PP2|1 is in the inter-
val 0.87–0.90 (median = 0.89), suggesting that a threshold of p2 = 10−5 may  
be more suitable for convincing evidence of association with a second  
autoimmune disease.

The corresponding R code is available at http://dx.doi.org/10.6084/
m9.figshare.827246 and is based, in part, on functions from the  
R package colocCommonControl available at https://github.com/mdfortune/
colocCommonControl.
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