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Standardized annotation of translated open 
reading frames
To the Editor — Ribosome profiling 
(Ribo-seq) has extended our understanding 
of the translational ‘vocabulary’ of the 
human genome, uncovering thousands 
of open reading frames (ORFs) within 
long noncoding RNAs (lncRNAs) and 
presumed untranslated regions (UTRs) 
of protein-coding genes. However, 
reference gene annotation projects have 
been circumspect in their incorporation 
of these ORFs because of uncertainties 
about their experimental reproducibility 
and physiological roles. Yet, it is clear 
that certain ‘Ribo-seq ORFs’ make stable 
proteins, others mediate gene regulation, 
and many have medical implications. 
Ultimately, the absence of standardized ORF 
annotation has created a circular problem: 
while Ribo-seq ORFs remain unrecognized 
by reference annotation databases, this 
lack of recognition will thwart studies 
examining their roles. Here, we outline a 
community-led effort involving Ensembl/
GENCODE, the HUGO Gene Nomenclature 
Committee (HGNC), UniProtKB, HUPO/
HPP and PeptideAtlas to produce a 
standardized catalog of 7,264 human 
Ribo-seq ORFs; a path to bring protein-level 
evidence for Ribo-seq ORFs into reference 
annotation databases; and a roadmap to 
facilitate research in the global community.

Ribo-seq1 provides an 
RNA-sequencing-based readout of mRNA 
translation by isolating ribosome-bound 
RNA fragments of ~30 nucleotides in 
length. Sequencing of these fragments 
offers genome-wide footprints of ribosome–
RNA interactions, detecting translated 
ORFs with sub-codon resolution2–8. 
Although Ribo-seq circumnavigates the 
experimental difficulties of working with 
protein molecules (for example, using 
mass spectrometry (MS) analytical tools) 
and readily finds translations missed by 
in silico evolutionary methods, it does not 
demonstrate the actual existence of proteins, 
and most translations do not show signs 
of constraint as coding sequences (CDS). 
A wide range of ‘functional’ scenarios are 
therefore plausible for Ribo-seq  
ORFs (Table 1).

Several public resources already 
process and/or display Ribo-seq datasets, 
including sORFs.org9, GWIPS-viz10 and 
Trips-Viz11, whereas OpenProt12 and 
nORFs.org13 incorporate Ribo-seq into 

whole-translatome catalogs. Meanwhile, 
McGillivray et al. have produced a catalog 
of upstream ORFs (uORFs) with predicted 
biological activity14. Such efforts have made 
important contributions in Ribo-seq ORF 
interpretation. Nonetheless, the global 
scientific community is constrained by 
the absence of ‘reference’ gene annotation, 
which supports most large-scale genomics 

projects and provides the framework for 
human variant interpretation (Fig. 1a, 
Supplementary Fig. 1).

The creation of Ribo-seq annotations 
within existing reference gene and protein 
databases presents specific challenges that 
were not faced by previous cataloging 
efforts9–13. In particular, it is necessary to 
consider how these annotations can be 

Table 1 | Approaches to interpreting Ribo-seq ORFs

Possible cellular 
interpretation 
of Ribo-seq ORF 
translation

Comments

A Ribo-seq ORF 
encodes a ‘missing’ 
conserved protein

Ribo-seq ORFs may be recognized as canonical—in accordance with existing 
protein annotations—on the basis that the sequence of the proteins they 
encode shows clear evidence of being maintained by evolutionary selection 
over a significant period of evolutionary time.

A Ribo-seq 
ORF encodes a 
taxonomically 
restricted protein

Ribo-seq ORFs may encode proteins whose sequences and molecular activities 
are specific to one species or lineage. Evidence for selection or conservation 
across distant species or lineages is lacking for these ORFs, either because 
the protein sequence has diverged beyond recognition from its orthologs, or 
because the protein evolved recently from previously noncoding material and 
homologs do not exist in other species or lineages.

A Ribo-seq ORF 
regulates protein or 
RNA abundance

Ribosome engagement of regulatory ORFs does not result in a protein product 
under selection but regulates the abundance of a canonical protein or RNA. 
This paradigm is well established for uORFs and uoORFs, as noted in Table 2,  
though it is applicable to other transcript scenarios. Regulatory ORFs may 
compete for ribosomes with their downstream canonical ORFs or produce 
nascent peptides that stall ribosomes, leading to the controlled ‘dampening’ of 
protein expression. Alternative modes of action, such as the induction of RNA 
decay pathways, the processing of small RNA precursors or the adjustment of 
RNA stability, have also been inferred.

A Ribo-seq ORF is 
the result of random 
translation

The translation of some Ribo-seq ORFs may simply be ‘noise’. Because 
translation has a high bioenergetic cost, a protein that results from random 
translation is likely to be translated at lower levels than a canonical CDS and 
evolve neutrally; it may also be comparatively unstable and could be rapidly 
degraded. Nonetheless, it is theoretically possible that certain proteins do exist 
as stable ‘junk’ proteins, or that random translation events affect the expression 
of canonical proteins. The detection of random Ribo-seq ORFs is less likely to 
be reproducible.

A Ribo-seq 
ORF encodes a 
disease-specific 
protein

This protein would not be produced under normal physiological homeostasis but 
could be of major interest for diagnostics and therapeutics. Insights of this sort 
are especially emerging in cancer biology, where transcription and translation 
are known to be dysregulated. This leads to the production of ‘aberrant’, 
possibly rapidly degraded proteins that are commonly antigenic and presented 
on the cell surface by the HLA system, potentially acting as neoantigens. 
Furthermore, antigens resulting from disease-specific dysregulated ribosome 
activity—sometimes called defective ribosomal products (DRiPs)—have also 
been explored.

Note: a given ORF may encompass several of these possibilities: for example, a translated ORF could be both regulatory and implicated in 
disease neoantigen production.
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integrated into the broad range of user 
workflows that are already supported by 
global annotation resources. For such 
reasons, reference annotation projects are 
generally conservative when it comes to 
the incorporation of new data types. Thus, 
rather than attempt to describe a ‘maximal’ 
set of potential Ribo-seq translations from 
the outset, our strategy is to build up a 
comprehensive resource in stages that is 
reciprocally improved by input from the 
scientific community (Fig. 1b).

Here, as ‘Phase I’ of this work, we 
present a consolidated catalog of Ribo-seq 
ORFs from seven publications2–8 annotated 
onto GENCODE version 35 (Fig. 1c; 
Supplementary Tables 1–9). A detailed 
description of the Ribo-seq datasets, our 
analysis methods and ORF characteristics 
is available in the Supplementary Methods. 
We removed ORFs smaller than 16 amino 
acids (aa) and those translated from 
non-ATG (‘near-cognate’) initiation codons, 
and merged redundant sense overlapping 

ORFs, resulting in a collated set of 7,264 
unique ORFs (Fig. 1c). We classified 
these ORFs according to their spatial 
relationship with existing gene annotations 
(Fig. 1d), as presented in Table 2. We hope 
community usage of this catalog will help 
address the key technical and biological 
questions necessary to move this work into 
‘Phase II’, where we aim to create a more 
comprehensive resource as outlined below.

For Phase I, we investigated repeated 
ORF identifications between studies, 
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Fig. 1 | Characterization of a consensus set of Ribo-seq ORFs for annotation by geNCODe. a, Schematic of the main steps and goals for this consortium 
effort. b, Map showing the participating institutions included in this effort. c, Schematic overview of filtering steps used to create the consensus set of 
ribosome profiling (Ribo-seq) ORFs. d, Diagrammatic representation of all Ribo-seq ORFs according to ORF type (see Table 2 for more information).
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observing that 3,085 of 7,264 Ribo-seq ORFs 
were found by more than one publication 
(Supplementary Fig. 2; Supplementary 
Tables 2 and 3). However, although 
such ‘reproducibility’ can demonstrate 
consistency in Ribo-seq signal, it neither 
provides insights into biological function 
nor indicates that the 4,179 non-replicated 
ORFs are ‘false’. A major goal of Phase II 
will be to incorporate a greater diversity of 

human cell types and tissues for improved 
estimates of ORF reproducibility, expression 
patterns and potential cell type specificity, 
along with further evaluation of criteria 
to quantify the technical confidence in 
Ribo-seq ORF calls.

Furthermore, Phase I excluded many 
translations by restricting the consensus 
set to ATG-initiated ‘cognate’ translations 
of at least 16 aa in length. Although these 

tiny ORFs may provoke skepticism in 
the absence of additional evidence—the 
smallest annotated human protein is 
24 aa—there may be no lower size limit 
for a functional ORF15. For example, 
the tarsal-less (tal) gene produces a 
polycistronic transcript translated into 
proteins as short as 11 aa in several insect 
species16. Furthermore, the inclusion of 
ORFs initiated with near-cognate start 
codons can be complicated by ambiguous 
predictions of initiation site positions17. 
Ribo-seq following treatment with 
lactimidomycin or homoharringtonine, 
which inhibit translation elongation and 
result in accumulation of sequencing 
reads at the putative start sites, can help to 
identify near-cognate start sites17,18. Such 
datasets will be leveraged by our future 
Phase II efforts. For our current annotation 
resource, we have separately aggregated 
the Ribo-seq ORFs with near-cognate 
start codons or translations shorter than 
16 codons (Supplementary Fig. 3a–c and 
Supplementary Tables 4 and 5), rather than 
including them in the Phase I catalog.

A core aim of Phase II will be to identify 
which Ribo-seq ORFs participate in cell 
physiology and how they do so. One 
aspect is distinguishing between cellular 
function mediated by a stable protein 
and functionality imparted at the level 
of translation itself. We here use ‘protein’ 
as an umbrella term for protein, peptide 
and polypeptide, although we recognize 
that the terms polypeptide, micropeptide 
or microprotein are commonly used for 
small protein molecules (Table 2). Because 
of the challenges of protein sequencing, 
evolutionary analysis has played a major 
historical role in ORF annotation, which 
is based on the assumption that the 
evolution of translated sequences is driven 
by selection at the protein level. Within 
our Phase I dataset, 75 Phase I replicated 
Ribo-seq ORFs (2.4%) present evidence 
of potential protein-level constraint as 
measured by PhyloCSF19 (Supplementary 
Fig. 3d–f); among these, ten have now been 
classified as protein coding by GENCODE 
(Supplementary Table 6).

Nonetheless, the evolutionary profile 
of many Phase I Ribo-seq ORFs remains 
hard to interpret. In part, this is because 
distinguishing ORF selection at the protein 
and DNA levels can be especially difficult for 
very small regions, and Ribo-seq ORFs are 
typically much smaller than those of known 
annotated proteins (Supplementary Fig. 3g–j). 
A second drawback is that evolutionary 
analysis cannot infer the protein-coding 
or regulatory potential of evolutionarily 
‘young’ de novo Ribo-seq ORFs20. Reference 
annotation projects remain skeptical 

Table 2 | terminology and categories of Ribo-seq ORFs

term Definition Biological role(s)

Ribo-seq ORF Translated sequences identified by the 
Ribo-seq assay that have not already been 
annotated by reference annotation projects. 
Also known as: noncanonical ORFs, 
alternative ORFs (altORFs), novel ORFs 
(nORFs) or, when <100 amino acids in size, 
small ORFs (smORFs), short ORFs (sORFs). 
Putative encoded proteins in smORFs/
sORFs are also known as: microproteins, 
micropeptides, short ORF-encoded 
polypeptides (SEPs).

See below.

upstream ORFs 
(uORFs)

Translated sequences located within the 
exons of the 5′ untranslated region (uTR) 
of annotated protein-coding genes.

Regulate translational efficiency of 
the downstream canonical protein. 
Cellular-stress-related translation. 
May produce independently 
functional proteins.

upstream 
overlapping ORFs 
(uoORFs)

Translated sequences beginning in the 
5′ uTR of an annotated protein-coding 
gene and partially overlapping its coding 
sequence in a different reading frame.

Similar to uORFs. Regulate 
translation of their overlapping 
CDS, but with potentially stronger 
regulatory potential than uORFs. 
May produce independently 
functional proteins.

Downstream ORFs 
(dORFs)

Translated sequences located within the 3′ 
uTR of annotated protein-coding genes

Less commonly detected and 
generally poorly understood. May 
act as cis translational regulators.

Downstream 
overlapping ORFs 
(doORFs)

Translated sequences beginning in the 
genomic coordinates of an annotated 
CDS but continuing beyond the annotated 
CDS and terminating in the 3′ uTR of the 
annotated protein-coding gene.

Similar to dORFs.

Internal 
out-of-frame ORFs 
(intORFs)

Translated sequences located on the 
mRNA of an annotated protein-coding gene 
and completely encompassed within the 
canonical CDS, but translated via a different 
reading frame.
Also known as: altCDSs, nested ORFs, 
dual-coding regions.

May regulate translation similarly 
to uORFs in some cases. Detection 
of intORFs with Ribo-seq is 
possible but difficult due to the 
convolution of triplet periodicity 
signals from two reading frames; 
it largely depends on the length 
and translation level of the 
intORF relative to the overlapping 
canonical CDS.

Long noncoding 
RNA ORFs 
(lncRNA-ORFs)

Translated sequences located within 
transcripts currently annotated as long 
noncoding RNAs (lncRNAs), including long 
intervening/intergenic noncoding RNAs 
(lincRNAs), long noncoding RNAs that 
host small RNA species (encompassing 
microRNAs, snoRNAs, etc.), antisense RNAs 
and others.

May produce independently 
functional proteins. Typically lack 
strong sequence conservation.
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about the existence of proteins that are 
not deeply conserved, despite the fact that 
some young proteins clearly do participate 
in cellular physiology20,21. Furthermore, 
there is a substantial knowledge gap 
in regard to the mode and tempo of 
regulatory ORF evolution. Here, genetic 
variation within human populations may 
provide insights. For example, Whiffin 
et al.22 recently used the gnomAD human 
variation dataset to identify 3,191 genes 
in which uORF-perturbing variants are 
likely to be deleterious, thereby inferring 
the physiological importance of these 
translations. Meanwhile, Neville et al.23 used 
the same dataset to find aggregate evidence 
of selective pressure against deleterious 
variants in their nORFs.org catalog13, which 
is especially pronounced for STOP-gain 
variants in uORFs. In prostate cancer, a 
recent analysis of 5′ UTR variants found 
regulatory roles for several uORFs23.

Although Ribo-seq ORFs may have 
regulatory roles irrespective of an encoded 
protein, the first step in confirming a 
protein-level physiological role for such 
an ORF is to demonstrate the existence 
of the protein in the cell. MS is a widely 
accepted approach to catalog the proteome, 
and its utility will be an important area of 
investigation for Phase II. At present, 609 
of 7,264 Ribo-seq ORFs have been reported 
to have support in published MS datasets 
(Supplementary Table 10). However, 
different groups use distinct methodologies 
and parameters for MS, and for Phase 
I these findings are simply reported in 
Supplementary Tables 2 and 3  
without further investigation. Reference 
annotation projects have historically favored 
high-stringency MS approaches, and the 
Human Proteome Organization (HUPO)/
Human Proteome Project (HPP)—which 
aims to produce a full annotation of the 
human proteome—has published guidelines 
to standardize the nature of MS evidence 
required to annotate a human protein24. 
As one facet of our development of an 
MS workflow, these Ribo-seq ORFs have 
been added to the PeptideAtlas analytical 
pipeline, which is used by HUPO. In 
Phase II, our projects will jointly examine 
the question of how best to use MS data 
to define which Ribo-seq ORFs produce 
proteins. For reference annotation, we 
see two aspects to this: first, how to set 
standards for accepting and reporting 
potential MS support for a prospective 
Ribo-seq ORF protein; and second, how 
to define the point at which the body 
of evidence supports protein-coding 
annotation.

These aspects are illustrated by a 
preliminary analysis, which took advantage 

of the fact that 333 of our Ribo-seq ORFs are 
present in sequences previously queried by 
the PeptideAtlas workflow (Supplementary 
Methods). We find single-mapping 
peptide-spectrum matches (PSMs) for 13 
Ribo-seq ORFs (Supplementary Table 11);  
all but one are supported by a single 
PSM each, whereas most of the peptides 
identified are not fully tryptic (two examples 
are presented in Supplementary Fig. 4). 
The majority of observed PSMs derive 
from human leukocyte antigen (HLA) 
peptidome datasets, which is consistent with 
prior proteomic analyses demonstrating 
enrichment for peptides mapping to 
Ribo-seq ORFs in immunopeptidome 
data25–27. We emphasize that this preliminary 
analysis was not a full remapping of MS 
data and involved only a fraction of the 
Ribo-seq ORFs; a larger, focused effort will 
be forthcoming.

There are multiple causes contributing 
to the fact that Ribo-seq ORFs and certain 
classes of canonical proteins are infrequently 
detected in MS data, which are summarized 
elsewhere28. One consideration for HUPO 
is that an MS-based ‘canonical’ protein 
assignment requires multiple PSMs, ideally 
based on non-overlapping tryptic peptides. 
Although we recognize the value of these 
guidelines, very small proteins may be ‘less 
discoverable’ by MS, especially due to a 
paucity of identifiable tryptic fragments28. 
Notably, nearly 1,500 protein-coding genes 
annotated by GENCODE, UniProt and 
HGNC do not presently have MS support 
recognized by HUPO24. Moving forward, 
we are committed to examining all potential 
protein-coding Ribo-seq ORF cases with 
full manual gene annotation processes, and 
we plan to expand this workflow to include 
manual analysis of the peptide spectra  
by PeptideAtlas.

Although the value of MS in identifying 
translated proteins is indisputable, we 
believe a broader ‘gold standard’ for 
evidence should employ additional 
methodologies, such as epitope tagging 
combined with western blot imaging or 
endogenous antibody work; HUPO already 
incorporates such data in collaboration 
with the Human Protein Atlas24. 
Consideration also needs to be given to 
emerging proteomics technologies, such 
as targeted proteomics workflows and 
immunopeptidomics, and progress is being 
made in medium-throughput functional 
screening assays. For example, recent 
large-scale studies have translated hundreds 
of Ribo-seq ORFs in mammalian cells 
through exogenous expression, finding that 
nearly 50% may stably produce proteins, 
despite little evidence of evolutionary 
constraint2,6,27.

In addition to their evaluation as 
proteins or regulatory units, the reference 
annotation of Ribo-seq ORFs necessitates 
the creation of integrated workflows 
to interpret overlapping variants, and 
notwithstanding great community interest 
in this field, standardized approaches 
are not yet available. We emphasize that 
variant interpretation pipelines designed to 
classify CDS mutations may be unsuitable 
for Ribo-seq ORFs (Table 1), and that a 
minority of overlapping variants fall within 
sequences displaying amino-acid-level 
constraint. Neville et al.13 found that their 
nORFs.org catalog contains 48 Human 
Gene Mutation Database or ClinVar variants 
that are already considered pathogenic or 
likely to be pathogenic, even though they 
do not disrupt annotated CDSs. Although 
these variants may affect noncanonical 
ORFs, it will be important to define their 
mechanisms of action through experimental 
studies, as alternative explanations for 
pathogenicity, such as the creation of cryptic 
splice sites, are supported in certain cases. 
After exclusion of variants in Ribo-seq ORFs 
that overlap annotated CDSs, a total of 1,142 
single-nucleotide variants present in the 
ClinVar database29 were located within our 
aggregated set of Phase I Ribo-Seq ORFs 
(Supplementary Methods). Fewer than 2% 
of these variants have been classified as 
pathogenic or likely to be pathogenic, but 
this is likely to be an underestimate because 
the absence of pathogenesis is commonly 
inferred from the absence of overlap with 
known coding features, and because ClinVar 
variant coverage is heavily skewed toward 
annotated CDSs.

Furthermore, there is major interest 
in the application of Ribo-seq to study 
human disease. In particular, it is being 
widely used to explore the dynamics of 
translation in cancer cells with aberrant 
proteins as diagnostic markers or targets for 
immunotherapy25,26,30. At present, reference 
annotation projects do not attempt to 
distinguish aberrant translation events from 
those that contribute to ‘normal’ physiology. 
It will be important to deduce the fraction 
of Ribo-seq ORFs that encode proteins 
that exist in normal cellular conditions. 
Conversely, we envisage the value of 
classifying potentially aberrant translations 
within Phase II through a distinct 
annotation framework.

Our intention is for the Ribo-seq Phase 
I catalog to be seen as a pragmatic interim 
solution to a long-term problem. We 
believe that reference annotation databases 
can advance both scientific and clinical 
research through the propagation and 
standardization of Ribo-seq ORF datasets, 
even—and perhaps especially—while 
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the phenotypic impact of these features 
remains uncertain. As biological knowledge 
improves, this will support the development 
of more accurate annotations and variant 
interpretations, with the potential to yield 
substantial insights across all aspects of 
human biology. In this spirit, we hope the 
results of Phase I of this project will be 
useful and beneficial to the community and 
invite interested labs to join our future Phase 
II efforts.
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PRO-ACTive sharing of clinical data
To the Editor — The open sharing of clinical 
data for research poses challenges not only 
in resolving consent, privacy and intellectual 
property issues associated with trial results1,2, 
but also in subsequently facilitating access to 
and utilization of the data. Controlled-access 
systems can place onerous restrictions on 
industry-based researchers, require arduous 
application processes and involve long 
review or authorization times for users. 
Indeed, analyses of major efforts, such as 
ClinicalStudyDataRequest.com (CSDR)3,4 
and the UK Health Research Authority’s 
(HRA) Assessment Review Portal (HARP) 
database5, suggest that fewer than 50% 
of the available trial datasets in these 
resources have been accessed and analyzed 
by researchers after launch. Here, we 
outline several strategies that ensured that 
researcher-engagement with an open-access 
ALS clinical trial data resource reached its 
full potential. We hope that our insights will 
be instructive for others seeking to galvanize 
open clinical data sharing efforts within the 
broader research community.

Prize4Life, a non-profit organization 
focused on accelerating treatments 
and a cure for ALS, created the Pooled 
Resource Open-Access ALS Clinical Trials 
(PRO-ACT) database (https://ncri1.partners.
org/ProACT/Document/DisplayLatest/9) 
in collaboration with Massachusetts 
General Hospital’s Neurological Clinical 
Research Institute and with funding from 
the ALS Therapy Alliance. PRO-ACT was 
publicly launched in 2012 (with further 
data incorporated in 2015), including 

demographics, family history, medical 
history (including use of frontline treatment 
riluzole), vital capacity, adverse events and 
other data types from both the placebo 
and active arms of over 20 clinical trials6,7. 
The database currently holds >10,000 fully 
deidentified ALS patient records from 23 
phase 2 and 3 clinical trials, representing the 
largest aggregation of publicly available ALS 
clinical data.

In contrast to other clinical trial 
repositories (Table 1), PRO-ACT has been 

widely accessed by >2,500 users, from >50 
countries, including dozens of universities, 
several governmental agencies and >50 
drug development companies. Over 80 
publications have used PRO-ACT as a 
primary data source. Last year, the success 
of PRO-ACT and its value to the ALS field 
was acknowledged when the database’s 
creators received the Healey Center Prize 
for Innovation in ALS8. Several factors have 
contributed to the success of PRO-ACT in 
engaging the wider research community.

Table 1 | Comparative access and usage for PRO-ACt and other open databases

Aspect PRO-ACt CSDR and hARP3–5

Review time ~1 day 6–12 months

Number of requests >2,500 300–500

Percentage of requests 
accepted

87% <50%

Access requirements •  Brief terms and conditions (for 
example, privacy and data integrity).

• Short summary of research plan

• Institutional ethics approval
• Comprehensive research plan
• Formal committee review

Cost of access Free to access the data; inexpensive to 
provide the data

Time- and resource-intensive to 
access the data

Data included • Placebo and active
• Entire dataset downloadable

• Placebo data
•  Frequent requirement to only 

use data within a cloud-based 
or managed environment

Efforts to publicize •  use of the prize model to attract 
widespread interest across disciplines

•  use of patients to explain and personify 
research needs

Typically limited, and discipline 
based only

Number of publications >80 <10 across examples4–6
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