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Haplotype reconstruction of distant genetic variants remains an unsolved problem due to the

short-read length of common sequencing data. Here, we introduce HapTree-X, a probabilistic

framework that utilizes latent long-range information to reconstruct unspecified haplotypes in

diploid and polyploid organisms. It introduces the observation that differential allele-specific

expression can link genetic variants from the same physical chromosome, thus even enabling

using reads that cover only individual variants. We demonstrate HapTree-X’s feasibility on in-

house sequenced Genome in a Bottle RNA-seq and various whole exome, genome, and 10X

Genomics datasets. HapTree-X produces more complete phases (up to 25%), even in

clinically important genes, and phases more variants than other methods while maintaining

similar or higher accuracy and being up to 10× faster than other tools. The advantage of

HapTree-X’s ability to use multiple lines of evidence, as well as to phase polyploid genomes in

a single integrative framework, substantially grows as the amount of diverse data increases.
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The two primary technologies for modern genetic associa-
tion studies, genotyping arrays for common variants and
next-generation sequencing for rare variants, are both

limited to inferring only the genotype of an individual, but not in
stitching these genetic differences into phased haplotypes1. This
partial view can hide important interactions between nearby
variants, and impede the search for understanding the molecular
basis of human disease2. For instance, if an individual contains
disease-risk variants in two different exons of the same gene, the
genotype alone does not reveal whether both disease-associated
mutations impact the same allele, thus leaving one functional
copy, or whether they impact different alleles, leading to no
functional copies of the gene. Such examples of compound het-
erozygosity have been associated with multiple diseases, including
cerebral palsy, deafness, and haemochromatosis3. However, many
additional examples likely remain undetectable given the lack of
haplotype phasing information in the vast majority of disease
association studies. The dearth of accurate haplotype phasing
information can impact our ability to recognize optimal host-
donor matches in organ transplantation, and also impede studies
of human genetic variation, human population history recon-
struction, ancestry determination for a given individual, and the
study of genome evolution across individuals and across species4.

Methods for inferring phase information are traditionally based
on pedigree information within large families5,6, but these apply
mostly to traditional linkage studies and not to modern genome-
wide association studies and rare variant sequencing studies, where
relatedness is generally not known. More recently, large-scale
population sequencing and genotyping studies such as HapMap7

and 1000 Genomes Project2 have provided experimentally phased
or computationally phased reference genomes that can be used for
phasing common variants8–11, but these maps are ineffective for de
novo mutations or rare variants that are typically not well-repre-
sented, or accurately phased in these references.

More specialized computational methods for phasing operate
on sequencing data alone and are able to phase rare and de novo
mutations as they rely on sequencing reads that span two or more
heterozygous SNPs12–16. However, many such methods are
severely limited by the short sequence length for heterozygous
SNP distances that exceed read fragment length. For some of
these methods, speed and memory usage is also an issue14,16. Two
exceptions—the recent proximity-ligation (Hi-C)17 and long-read
sequencing (e.g., Pacific Biosciences or Oxford Nanopore) based
methods18,19 that enable longer-range phasing—yet still require
specialized technologies that are expensive and that suffer from
high error rates. On the other hand, some high-throughput
sequencing technologies—especially transcriptome sequencing
via RNA-seq—are affordable, widely available, already established
and standardized, and allow longer-range phasing within genes
by leveraging the fact that the transcriptomic distance between
SNPs may be less than the genomic distance.

The splicing of RNA transcripts as they mature from pre-
mRNAs to mRNAs provides an opportunity to mitigate the pro-
blem of short-read spans by bringing together exons across large
genomic distances, thus enabling the recognition of heterozygous
alleles that come from the same chromosomal copy20,21. However,
these methods are still contiguity-based, relying on sequencing
reads that span two or more heterozygous SNPs. Moreover, even
the range of paired-end RNA-seq based phasing is limited by read
fragment length in the presence of multiple or long intermediary
exons that are devoid of heterozygous variants (Fig. 1). For instance,
among the well-studied NA12878 transcripts that contain two or
more heterozygous SNPs, one fifth contain a homozygous exonic
region longer than 1000 bases between at least one pair of con-
secutive SNPs (Supplementary Note 1). Some attempts have been
made to exploit underlying RNA-seq biases to improve the

sequence-contiguity methods: examples include use of transcrip-
tional bursting and technical dropout for haplotype phasing in
single-cell RNA-seq datasets17; yet these signals are much less
pronounced in classical RNA-seq data.

Here we introduce a conceptual advance that enables longer and
more accurate haplotype phasing than existing sequence contiguity-
based phasing methods for high-throughput RNA-seq datasets by
tapping into the rich source of differential allele-specific expression
(DASE) information within RNA-seq data. We follow the intuition
that DASE in the transcriptome can be exploited to improve
phasing because SNP alleles within maternal and paternal haplo-
types of a gene are present in the read data at asymmetric fre-
quencies due to the gene’s differential haplotypic expression (DHE).
Phasing based upon differentially expressed allele frequencies
additionally allows the use of reads covering only one heterozygous
SNP, as opposed to existing methods which discard this informa-
tion and rely solely on sequence contiguity (Fig. 1). Conceptually,
given sufficient read coverage and DHE, all intra-genic SNPs of a
gene with a single isoform can be phased using DASE, regardless of
the transcriptomic distances between them. However, without
knowing the underlying generative distributions of differential
expression, we cannot extract linking information from this data
source. We overcome this challenge by designing a Hidden Markov
Model (HMM) to estimate the maximum likelihood underlying
expression bias and prove that, with a few mild restrictions, the
maximum likelihood estimate corresponds to concordant expres-
sion. We therefore present HapTree-X, an efficient and accurate
phasing tool that performs single-individual haplotype reconstruc-
tion using RNA-seq data by exploiting DHE, in addition to spliced
reads that overlap multiple variants. The core of the HapTree-X
algorithm is the maximum likelihood framework that determines
haplotype phasing by analyzing RNA-, DNA- or exome-seq and
barcoded22 read data either independently or concurrently.
HapTree-X enables long-range links to be used for phasing of much
longer blocks. We demonstrate that our DASE-based portion
leverages the large number of RNA-seq fragments that cover only
one SNP—around an order of magnitude (more than 9×) more
reads than other NGS-based methods can utilize, and increases the
total phased block length up to 25% as compared to the other tools.
We also show how DASE-based phasing of SNPs within genes with
multiple isoforms can be theoretically achieved (Supplementary
Note 3), with the restriction that the set of SNPs that can be phased
is dependent on the composition and relative abundance of the
multiple isoforms. HapTree-X generally decreases the switch error
(SE) rate over the top-performing methods HapCUT12 and Hap-
CUT215—up to 15% in some cases—while at the same time phasing
more SNPs and getting longer phased blocks; the commonly used
SE rate is the percentage of positions where the two chromosomes
of a phase must be switched in order to agree with the true phase
when compared to a ground truth high confidence haplotype. On
the other hand, methods with similar SE rates to HapTree-X21

phase orders of magnitude fewer SNPs and provide significantly
shorter blocks than HapTree-X. We also show that HapTree-X
provides more complete phases in many disease-related genes, and
that it consistently phases longer clinically important genes better
than other tools even on low-coverage datasets.

HapTree-X generalizes prior work, HapTree14—a maximum
likelihood contig-based phaser that makes use of reads that span
multiple SNPs—by non-trivially adapting the HapTree prob-
abilistic model to now incorporate RNA-seq-specific priors that
describe the correlation of allele-specific imbalance at SNP loci,
allowing the construction of longer phased haplotype blocks.
Furthermore, HapTree-X preserves the unique properties of
HapTree, such as polyploid phasing, while adding capabilities
such as incorporating long-range sequencing technologies22 and
RNA-seq read data. HapTree-X also has greater scalability and is
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significantly faster than HapTree due to algorithmic and engi-
neering improvements that reduce redundant computation as
well as parallelization capabilities provided by the bioinformatics
domain-specific language Seq23.

Not only does our general model readily integrate existing
contiguity-based sequencing data that provides pairs of linked
SNPs (e.g., Illumina whole-genome sequencing (WGS)12, exome
sequencing, 10X long-range sequencing22, and RNA-seq without
DASE21), it also is able to incorporate more complex diverse data
as long as the user can give a reasonable prior about the under-
lying data; this usage case is demonstrated below where DASE-
based phasing can phase reads covering only a single SNP.

Results
Datasets. We compared HapTree-X against state-of-the-art
sequence-based computational phasing tools: HapCUT12, Hap-
CUT215, and phASER21. For benchmarking, we utilized the well-
studied GM12878 sample, using cytosol, nucleus, and whole-cell
RNA-seq data from the GM12878 lymphoblastoid cell-line from
ENCODE CSHL Long RNA-seq track24, whole exome sequencing
data from 1000 Genomes Project and a WGS sample from Illu-
mina Platinum Genomes25; GENCODE release 19 was used as
the reference gene annotation. We also included the K562 chronic
myelogenous leukemia cell line RNA-seq data and validated it
with the recently validated phasing ground truth dataset from

ENCODE26. Lastly, we used five in-house sequenced Genome in a
Bottle (GIAB)27,28 RNA-seq samples: NA12878, NA24143,
NA24149, NA24385, and NA24631 and 10X Genomics’ publicly
available GIAB samples and compared phased haplotype blocks
to the gold-standard GIAB validation phases (Table 1). All RNA-
seq samples were aligned with STAR aligner29 and genotyped by
using GATK’s Best Practices workflow for RNA-seq data30. All
phasers were run on a macOS desktop computer with 3.60 GHz
Intel Core i9 CPU and 64 GB of RAM. For further details on the
experimental setup, see Supplementary Note 2.

RNA-seq results. The results in Table 1 show that HapTree-X
generally decreases the SE rate over HapCUT and HapCUT2—up
to 15% in some cases—while at the same time phasing more SNPs
and getting up to 25% longer phased blocks, as in the K562
leukemia cells. While phASER has overall lower SE rate, this is
due to its phasing an order of magnitude less SNPs because of
stringent block filtering as compared to the other tools. However,
when restricted to phASER’s blocks, the difference in SE either
disappears or becomes negligible: in the worst case, HapTree-X
introduces no more than 15 SEs over the 7000 validated phased
SNPs (causing the effective error rate to be less than 0.2%).

Other technologies. HapTree-X is also able to use RNA-seq data
to improve phasing of classical DNA sequencing. Table 1 shows

Phasing using standard WGS-reads

Phasing using RNA-seq reads

Phasing with HapTree-X framework (RNA-seq reads + DASE)

Short phased blocks

Longer phased blocks

Completely phased block

Exon Intron Intron

Intron Intron

Exon Exon

Exon Exon Exon

Reference genome

?

Phasing using differential
allele-specific expression.

?

Fig. 1 HapTree-X framework compared to read-based phasing. Traditional whole-genome sequencing (WGS) based phasing methods (top panel) depend
on sequence contiguity and thus require a pair of SNPs (in red) to be connected through a common read that overlaps both in order to be phased. RNA-seq
reads provide longer distance phasing capability due to long introns in the genome that are spliced-out in the sequenced transcript fragments (middle
panel), yet SNPs that are far apart within the transcript due to long homozygous exonic regions are still difficult to phase using RNA-seq reads. Our
HapTree-X framework (lower panel) overcomes this limitation by integrating RNA-seq reads and differential allele-specific expression (DASE) available
from the RNA-seq data into a single probabilistic framework for haplotype phasing. For genes that display differential haplotypic expression (DHE), the
majority of alleles can be phased together to obtain a single haplotype block for the entire gene. Depending on the DHE and depth-coverage, DASE-based
phasing performs accurate haplotype reconstruction, without requiring paired-end or long reads, maintaining or improving on accuracy independent of
gene/exon lengths as long as differential haplotypic expression is consistent across the loci being phased.
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that HapTree-X can increase the span of phasing blocks up to 12%
in joint exome and RNA-seq data while maintaining lower SE over
HapCUT and HapCUT2 (the aforementioned observation about
phASER results still applies). HapTree-X also phases and links up
to 500 SNPs ignored by other phasers. On WGS datasets,
HapTree-X outperformed HapCUT2 both in terms of SE rate and
runtime; we also observed a total phased block length increase of
30% in the joint WGS and RNA-seq experiment (Table 2).

We compared HapTree-X to HapCUT2 (the only state-of-the-
art phaser that can phase 10X data) not only on a whole-genome
Platinum NA12878 dataset, but also on two high coverage 10×
datasets that were aligned by the EMA aligner31 (Table 2).
HapTree-X was able to phase much faster than HapCUT2 (with
up to 10× speed-up) while maintaining overall better switch rate.

Finally, we note that the polyploid capabilities of HapTree-X
are identical to those of HapTree (except that the new pipeline is
computationally more efficient). For these reasons, we refer
readers to the original HapTree results for polyploid phasing14.

Performance and usability. In addition to accurate results, we
demonstrate significant speed improvements over other phasing
methods tested (Table 3)—HapTree-X is often twice as fast as
HapCUT2, and in the case of 10× data, HapTree-X is more than
10× faster. HapTree-X is also the only phaser that can use more
than one thread to perform phasing: while even in single-
threaded mode HapTree-X is the fastest phaser, by using four
threads HapTree-X runs even faster, allowing the user to com-
plete joint exome and RNA-seq analysis in 5 min or less, and to
complete joint WGS and RNA-seq analysis (≈180 GB of data) in
less than 25 min. Note that the runtime of HapTree-X is negli-
gible as compared to the best practices genotyping pipeline
(which takes at least a day to complete on a cluster).

HapTree-X can be added downstream to any pre-existing
RNA-seq processing pipeline to output phased haplotype blocks.
HapTree-X takes as input RNA-seq read alignment files (SAM/
BAM format), a standard VCF file containing the individual’s
genotype, and a gene annotation that specifies the boundaries of
genes and their exons. Finally, we note that HapTree-X can easily
incorporate different technologies during the phasing.

Effect of DASE. Incorporating DASE into phasing enables
HapTree-X to increase the number of phased SNPs and the

length of phased blocks within genes in RNA-seq data. While
DASE had modest impact on low-coverage GIAB samples,
increasing the total phase length by only 1%, increased coverage
on GM12878 samples caused DASE to increase the total
phase length to 5% over other tools and HapTree-X with DASE
turned off. The DASE effect is much stronger in joint exome and
RNA-seq analysis: we observed up to a 12% increase in total
phase length. We noticed that DASE performs the best on the
K562 leukemia cell line, where the total phase length went up by
25%. We provide a theoretical explanation of this effect by
showing that accuracy increases exponentially with FPKM depth-
coverage—fragments per kilobase of transcript per million map-
ped reads (Supplementary Note 1, and Supplementary Figs. 1
and 2). As the cost of RNA-seq data decreases, datasets with
increasing coverage will become more accessible, substantially
expanding the impact of HapTree-X. Finally, we note that DASE
itself is responsible for inclusion of many SNPs that are otherwise
excluded by HapTree and other tools—in the case of combined
RNA-exome datasets, DASE is able to use and link up to 1000
previously unphased SNPs as compared to HapTree-X without
DASE. In a few cases, more SNPs result in slightly increased
switch error (SE) rate as compared to HapTree-X without DASE
and other tools. We examined those errors, and found that the
number of SNPs that one needs to remove to achieve better SE
rates is an order of magnitude less than the number of SNPs that
are additionally phased.

HapTree-X improves phasing in clinically significant genes.
HapTree-X links SNP pairs in the GM12878 dataset that could
not be phased by sequence contiguity-based methods. Such
phased SNPs enable us to better phase genes that have clinical
associations with various diseases; a few significant examples that
show BTN3A2 (associated with epithelial ovarian cancer32),
KANK1 (cerebral palsy33), LNPEP (autism spectrum disorders34),
MED28 (breast cancer35), DDR1 (schizophrenia36), SPRN
(Creutzfeldt-Jakob disease37), STEAP2 (prostate cancer38),
ZNF765 (renal cell carcinoma39), and N4BP2L2 (arsenic poison-
ing40) genes are shown in Fig. 2 (note that this list is not
exhaustive: we just selected a few genes to illustrate the
improvements by HapTree-X). HapTree-X not only phases pre-
viously unphased SNPs, but can also link separate blocks found

Table 1 Comparison of phasing quality for four different phasers: HapCUT, HapCUT2, phASER, and HapTree-X on 9 RNA-seq
datasets with varying transcriptomic coverage and on four different RNA-seq datasets combined with the NA12878 exome
dataset.

HapCUT HapCUT2 phASERa HapTree-X

GIAB (low coverage)
NA12878 N/A N/A 3,238 0.95 3387 5871 1.98 6,927
NA24143 N/A N/A 2,399 0.00 3114 5179 0.00 7,532
NA24149 6,696 0.97 9,322 6,677 0.97 9,306 2,984 1.37 3125 6710 0.97 9,414
NA24385 7,079 1.75 8,100 7,055 1.86 7,971 3,896 0.82 3713 7088 1.64 8,124
NA24631 7,888 0.00 10,355 7,866 0.00 10,026 3,919 0.00 6303 7892 0.00 10,414
K562 leukemia cell line (medium coverage)
K562 9993 0.96 4990 9972 0.82 3960 6770 0.16 2583 10,270 0.70 6,819
GM12878 (high coverage)
Cytosol 28,706 2.61 18,724 28,699 2.62 18,441 14,451 1.02 11,846 28,815 2.59 20,475
Nucleus 31,420 2.23 21,249 31,418 2.23 21,208 17,377 1.05 13,137 31,593 2.19 22,571
Whole 30,520 1.91 18,960 30,520 1.89 18,960 15,420 0.92 10,932 30,672 1.94 20,141
NA12878 exome data (low coverage) with RNA-seq data
GIAB 181,442 1.26 16,506 180,054 1.03 16,244 6188 1.55 5272 181,467 1.01 16,787
Cytosol 205,184 1.44 37,036 203,873 1.29 36,790 31,961 1.20 18,348 205,483 1.23 41,643
Nucleus 211,743 1.37 46,259 210,621 1.25 44,854 66,044 0.93 23,480 212,214 1.23 50,763
Whole 209,252 1.31 37,773 208,060 1.15 37,375 54,475 0.95 17,039 209,694 1.15 42,624

Cells contain the number of SNPs phased, switch error (SE) rate, and total length of phased blocks (span) in kilobases by a phaser for a dataset. Bold values represent the best overall results for a metric
in the dataset. Overall, HapTree-X consistently phases more SNPs with comparable or lower switch error rates and longer phased blocks.
N/A a tool was not able to successfully complete the phasing.
aphASER, as a rule, uses more stringent filtering and thus achieves lower switch rate while phasing order of magnitude less SNPs than the other tools; however, HapTree-X’s SE rates are comparable if we
restrict it to the same phasing blocks.
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by other methods and thus give more complete phasing results
that link all the heterozygous SNPs in these genes (Fig. 2).

To demonstrate that these improvements are not individual-
specific, we ran HapTree-X and other tools on thirty 1000 Genomes
GEUVADIS RNA-seq samples41. All of these samples were low-
coverage RNA-seq samples, and thus could not benefit from DASE
as much as GM12878 samples. Nevertheless, HapTree-X phased
more SNPs in all cases than the other methods, and DASE
consistently (17 out of 30 samples) improved phasing of the long
BCR gene, which has a causal relationship to chronic myeloid
leukemia42,43 (see Fig. 3 for the illustration of these improvements).

Discussion
With improvements in sequencing technologies, the ability to
capitalize on diverse and available sequencing data will become
critical to fully realizing the potential of large-scale genomics. The
HapTree-X software provides joint DNA and RNA phasing
capability that achieves better phasing performance than either
data source used alone. It leverages the long-range phasing cap-
abilities of RNA-seq and DASE to increase the span and com-
pleteness of regions phased with read overlap information. This
enhances the phasing of even noncoding and non-expressed
regions of the genome when used in combination with genome or
exome sequencing datasets. As such, it can be incorporated as a
pre- or post-processing step in conjunction with existing
population-based phasing pipelines to provide more complete
phases.

While linked read-based phasing technologies show great pro-
mise for long-range phasing applications (and HapTree-X can use
this data as shown with 10×), RNA-seq datasets are currently
cheaper, more prevalent and contain abundant long-range phasing
information via splicing and DASE that is currently underutilized.
Notwithstanding the inherent limitations of RNA-seq data that
reduce the scope of DASE-enabled optimizations, such as the small
transcriptome size and gene-restricted phases, we show that such
data still harbors enough valuable information to significantly

improve phasing quality of both RNA-only and joint DNA-RNA
analyses, with no impact on the computational resources.

In the near future, we plan to extend HapTree-X to single-cell
RNA-seq datasets that are rapidly becoming more affordable and
common44,45. We also expect to see further validation of Hap-
Tree-X’s theoretical framework as the coverage of RNA-seq and
the size of the ground truth datasets expand: DASE phases better
if the coverage is higher, and the large portion of SNPs phased by
any of the evaluated tools are not currently validated by the GIAB
project (as HapTree-X phases the largest number of SNPs, we
expect it to benefit the most from the more complete validation
sets). Finally, we are looking to expand our DASE theoretical
framework to other problems, as other kinds of data—such as
barcoded reads—exhibit similar biases that can be in principle
modeled by the same theoretical framework.

The fast access to more-comprehensively phased gene regions
opens the door for further understanding of the relationship
between genotype and phenotype in biomedical disease research.
Our conceptual advance, as well as our implementation, will
greatly benefit researchers who analyze large amounts of DNA
and RNA sequencing data, regardless of the technology.

Methods
Overview of HapTree-X. HapTree-X is a Bayesian haplotype reconstruction fra-
mework which simultaneously employs read overlap information (through read
contiguity or read barcodes) and optional DASE for haplotype phasing. HapTree-X
outputs phased haplotype blocks, given an input of read alignment files (BAM/
SAM), a VCF file containing the individual’s genotype, and an optional gene model
which specifies the genes (and their exons) within the genome. It is able to take
multiple lines of evidence (e.g., both RNA and DNA-seq aligned files) at the same
time for improved phasing.

The HapTree-X pipeline is initiated by determining which genes are expressed
using the gene model and RNA-seq data. For each of these genes, a maximum
likelihood expression bias (DHE) is computed. Furthermore, we determine which
SNPs within those genes have high likelihood of concordant expression; we phase
only those SNPs. For reads containing only such SNPs, we assign to them the
computed expression bias of the gene they cover; for all other reads, we assign a
non-biased expression. Finally, applying a generalized version of HapTree14, we
determine a haplotype of maximal likelihood which depends on the DASE present

Table 2 Comparison of HapCUT2 and HapTree-X (single-threaded mode) on WGS and 10X Genomics datasets.

HapCUT2 HapTree-X
NA12878 whole-genome sequencing (WGS) 1:38:38 (16.21) 0:38:04 (16.12)
NA12878 WGS with nucleus RNA 1:48:01 (16.41) 0:40:17 (15.20)
10X Genomics NA12878 22:07:05 (1.11) 1:54:05 (1.09)
10X Genomics NA24385 22:13:43 (4.83) 1:53:16 (4.81)

Cells contain runtime and switch error rate (in parenthesis). Bold values represent the best overall results for a metric in the dataset. HapTree-X is from 3 to 10× faster than HapCUT2 while providing
better or comparable switch rates. Time units are in h:mm:ss.

Table 3 Comparison of runtime between different phasing tools (in format (h):mm:ss) on a few representative samples (all other
samples display the similar ratios between runtimes).

HapCUT HapCUT2 phASER HapTree-X HapTree-X
(4 threads)

GIAB (NA24149) 3:03 1:30 1:08 0:54 0:27
GM12878 (Nucleus) 21:10 12:59 16:55 8:59 3:15
Exome (Whole) 31:21 17:13 35:03 12:22 5:10
Exome (Cytosol) 25:46 12:57 24:23 8:59 3:36
WGS (Nucleus) N/A 1:48:01 N/A 40:17 23:16
10X (NA12878) N/A 22:07:05 N/A 1:54:05 57:37

Bold values represent the fastest runtime in single-threaded mode on a dataset. HapTree-X is clearly the fastest phaser, being up to 10× faster than the fastest competitor. N/A indicates that the tool was
not evaluated on that sample.
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in the RNA-seq data, as well as the sequence-contiguity information within
the reads.

A high-level overview of the DASE-based phasing. Using DASE for phasing
presents major challenges. Consider a simple example, presented in Table 4, where
we have a single gene, no splicing, and each read covers one SNP. We can attempt
to phase the gene using DASE. If we already knew that the DHE was β= 0.9, then
it would be straightforward to guess the haplotypes as in Table 4.

However, we overcome the difficulty that the underlying DHE is unknown,
often not as drastically high as β= 0.9, and must instead be inferred from the same
expression data. Furthermore, the integration of these data with reads covering
multiple SNPs, as well as the complications arising from multiple genes and
splicing makes this inference highly nontrivial.

We present a Bayesian mathematical framework for estimating B, which allows
inference of long-range haplotype links, using a combination of HMMs and
maximum likelihood analysis (Online Methods). Our framework seeks to
determine the haplotype of maximal probability given the observed read data (R),
DHE (B), and error rates (ε). Applying Bayes’ rule, we can reduce this problem to
determining the haplotype H which maximizes the product over all reads R of the
probability of observing each read r, given H is the true haplotype:

P½HjR;B; ε� ¼ P½RjH;B; ε�P½HjB; ε�
P½RjB; ε� where P½RjH;B; ε� ¼

Y
r2R

P½rjH;B; ε�: ð1Þ

To compute this probability, for each read r, we partition the SNPs covered by r
into A(r, Hi) and D(r, Hi) (those SNPs where the read r and haplotype H agree and
disagree, respectively) and take the product of the probabilities of agreement and
disagreement, along with the assumed rate of expression (see below for further

context and details of notation):

P½rjH;B; ε� ¼
X

i2½0;1� βri
Y

s2Aðr;HiÞ
ð1� εr;sÞ

Y
s2Dðr;HiÞ

εr;s

0
@

1
A: ð2Þ

Notation. The goal of phasing is to recover the unknown haplotypes (haploid
genotypes), H= (H0, H1), which contain the sequence of variant alleles inherited
from each parent of the individual. As homozygous SNPs are irrelevant for
phasing, we restrict ourselves to heterozygous SNPs (from now on referred to
simply as an SNP) and we denote the set of these SNPs as S. We assume these SNPs
to be biallelic, and because of these restrictions, H0 and H1 may be expressed as
binary sequences, where a 0 denotes the reference allele and a 1 the alternative
allele; H0 and H1 are complement sequences. Let H[s]= (H0[s], H1[s]) denote the
alleles present at s, for s ∈ S.

We denote the sequence of observed nucleotides of a fragment simply as a read
(independent from single/paired-end reads). We assume each read is mapped
accurately and uniquely to the reference genome, and moreover that each read is
sampled independently (note that the problem of multi-mappings in RNA-seq data
should be resolved upstream of the HapTree-X pipeline with the tools such as
ORMAN46). The set of all reads is denoted as R. Given a set of SNP loci S, we
define a read r ∈ R as a vector with entries r[s] ∈ {0, 1, −}, for s ∈ S, where a 0
denotes the reference allele, a 1 the alternative allele, and − that the read does not
overlap s or that it contains an allele that is not observed in the genotype of locus s
(likely due to a sequencing error). We say a read r ∈ R contains an SNP s if r
[s] ≠ − and we let size of a read r, ∣r∣, refer to the number of SNPs it contains. For
each read r and for each SNP locus s, we assume a probability of opposite allele
information r[s] equal to εr,s and represent these error probabilities as a matrix ε.
We assume these errors to be independent from one another. (Note that we model
opposite allele errors here, and not SEs: SE is merely a commonly used accuracy
measure for the quality of properly estimating opposite allele errors.)
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Fig. 2 Phasing of nine disease-associated genes by HapTree-X, HapCUT2, and phASER using whole-cell RNA-seq data from GM12878. Unphased SNPs
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Fig. 3 Phasing of the BCR gene by HapTree-X, HapCUT2, and phASER on a selection of four GEUVADIS RNA-seq samples. Unphased SNPs are
represented by an empty circle, and each phased block is given a unique color. Reported SNP loci are relative to the human genome hg19 (GRCh37).
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In genomic read data, all r ∈ R are equally likely to be sampled from the
maternal or paternal chromosomes. In RNA-seq data however, this may not always
be the case. In this paper, we define the DHE to represent the underlying
expression bias between the maternal and paternal chromosomes of a particular
gene. Throughout, we will refer to the probability of sampling from the higher
frequency haplotype of a gene as β. We assume two genes g; g 0 have independent
expression biases β; β0 . DASE we define as the observed bias in the alleles at a
particular SNP locus present in R. We define the event of concordant expression to
be when the DASE of an SNP agrees with the DHE of the gene to which the SNP
belongs. To perform phasing using the sequence contiguity within reads (contig-
based phasing), upon the set of SNP loci S and read set R, we define a read graph
such that there is a vertex for each SNP locus s ∈ S and an edge between any two
vertices s; s0 if there exists some read r containing both s and s0 . These connected
components correspond to the haplotype blocks to be phased.

To phase using differential expression (DASE-based phasing), we assume the
existence of some gene annotation G that specifies the genes (and their exons)
within the genome. We used GENCODE v19 annotation for our experiments on
NA12878. For each g ∈ G, we assume that the haplotypes (H0, H1) restricted to g
are expressed at rates β0, β1 respectively due to DHE. The phasing blocks
correspond to the SNPs in genes g ∈ G, though we will see that some SNPs are not
phased due to insufficient probability of concordant expression. Two distinct genes
g; g 0 may not be DASE-phased due to lack of correlation between their expression
biases β; β0 . In the remainder of this paper, when DASE-phasing a particular gene,
by H we mean the gene haplotype, that is H restricted to the SNPs within g.

The final blocks to be phased by HapTree-X integrating both contig and DASE-
based phasing are defined as the connected components of a joint read graph. The
vertices are the SNPs phased by either method, and there is an edge between any
two s; s0 if there exists some block (from either method) containing both s; s0 .

Likelihood of a phase. We formulate the haplotype reconstruction problem as
identifying the most likely phase(s) of set of SNPs S, given the read data R, and
sequencing error rates ε. Furthermore, suppose we knew for each read r, the
likelihood that r was sampled from Hi (denote this as βri ); we represent these
probabilities as a matrix B. While B is not given to us, we may estimate B from R.
We derive a likelihood equation for H, conditional on R;B and ε.

Given a haplotype H, reads R, error rates ε, and expression rates B, the
likelihood of H being the true phase is given by

P½HjR;B; ε� ¼ P½RjH;B; ε�P½HjB; ε�
P½RjB; ε� : ð3Þ

Since P½RjB; ε� does not depend on H, we may define a relative likelihood
measure, RL. Note that P½HjB; ε� ¼ P½H� as the priors on the haplotypes are
independent of the errors in R, and of B.

RL½HjR;B; ε� ¼ P½RjH;B; ε�P½H�: ð4Þ
For the prior P[H], we assume a potential parallel bias, ρ ≥ 0.5, which results in

a distribution on H such that adjacent SNPs are independently believed to be
phased in parallel (00) or (11) with probability ρ and switched (01) or (10) with
probability 1− ρ. When ρ= 0.5 we have the uniform distribution on H. The
general prior distribution on H in terms of ρ is

P½H� ¼ ρPðHÞð1� ρÞSðHÞ; ð5Þ
where P(H) and S(H) denote the number of adjacent SNPs that are parallel and
switched in H, respectively. Given the above model, as each r ∈ R independent, we
may expand P½RjH;B; ε� as a product:

P½RjH;B; ε� ¼
Y
r2R

P½rjH;B; ε� ð6Þ
In the setting of RNA-seq, reads are not sampled uniformly across homologous

chromosomes, but rather according to the DHE (expression bias) of the gene from
which they are transcribed. We see in Eq. (7) how this asymmetry allows us to
incorporate reads which contain only one SNP. Let A(r, Hi), D(r, Hi) denote the
SNP loci where r and Hi agree and disagree respectively; then it follows that

P½rjH;B; ε� ¼
X
i2½0;1�

βri
Y

s2Aðr;HiÞ
ð1� εr;sÞ

Y
s2Dðr;HiÞ

εr;s: ð7Þ

When there is uniform expression βr0 ¼ βr1 (no bias) and if ∣r∣= 1, then P½rjH;B; e�

is constant across all H. This is not the case when the expression bias is present
however, and therefore reads covering only one SNP affect the likelihood of H.

If we knew the matrix B, we could apply HapTree to search for H of maximal
likelihood; the matrix B, however, is unknown. Suppose instead we are given some
probability distribution for the entries of B, to compute P½rjH;B; ε�, it is enough to
know the expected value of each entry because of the linearity (over i) of
P½rjH;B; ε�. To this aim, we provide methods for determining a maximum
likelihood B. To approximate distributions for the entries of B, we assume for each
gene there is uniform expression with some probability p, and differential
expression with probability 1− p; in the latter case, the differential expression is
assumed to be that of maximal likelihood. By varying p, we can vary the relative
weights associated to DASE-based phasing and contig-based phasing. Furthermore,
we develop methods for determining for which reads r we are sufficiently confident
there this is in fact non-uniform expression, that is βr0 ≠ βr1. Moreover, we
determine for which SNPs s ∈ S (contained only by reads of size one), we
have sufficient coverage and expression bias to determine (with high accuracy) the
phase H[s].

Maximum likelihood estimate of DHE. For a fixed gene g, containing SNPs Sg, the
corresponding reads Rg have expression biases βr0; β

r
1 which are constant across

r ∈ Rg. Let β ¼ βr0 refer to this common expression; we wish to determine the
maximum likelihood underlying expression bias β of g responsible for producing
Rg. To do so, we formulate an HMM and use the forward algorithm to compute
relative likelihoods of R given β, ε.

To achieve the conditional independence required in an HMM, we define R0
g , a

modification of Rg, containing only reads of size one, so that R0
g;s (the reads r 2 R0

g

which cover s) are independent from R0
g;s0 ð8s≠ s0 2 SgÞ. We restrict each r ∈ Rg to a

uniformly random SNP s, and include this restricted read of size one (r∣s) in R0
g (we

note that if ∣r∣= 1, then r= r∣s, by definition.) Therefore, R0
g;s and R0

g;s0 are
independent as all r 2 R0

g are of size one.
Our goal is to determine the maximum likelihood β, given R0

g . We assume a
uniform prior on β, and therefore P½βjR0

g ; ε� is proportional to P½R0
g jβ; ε�

(immediate from Bayes theorem). We may theoretically compute P½R0
g jβ; ε� by

conditioning H (which is independent from β, ε)

P½R0
g jβ; ε� ¼

X
H

P½R0
g jH; β; ε�P½H�; ð8Þ

and expand P½R0
g jH; β; ε� as a product over r 2 R0

g as in Eqs. (6) and (7). This

method, however, requires enumerating all H; since jHj ¼ 2jSg j we seek different
approach. Indeed, we translate this process into the framework of an HMM, apply
the forward algorithm to compute f ðβÞ :¼ P½R0

g jβ; ε� exactly for any β, and since f
has a unique local maxima for β ∈ [0.5, 1], we can apply Newton-Rhapson method
to determine β of maximum likelihood.

To set this problem in the framework of an HMM, we let the haplotypes H
correspond to the hidden states, R0

g to the observations, and let the time evolution
be the ordering of the SNPs Sg. The observation at time s in this context is R0

g;s , the
reads covering SNP s. The emission distributions are as follows:

P½R0
g;sjH½s�; β; ε� ¼

Y
r2R0

g;s

P½rjH½s�; β; ε�; ð9Þ

P½rjH½s�; β; ε� ¼ β0ð1� εr;sÞ þ ð1� β0Þεr;s; r½s� ¼ H0½s�
β1ð1� εr;sÞ þ ð1� β1Þεr;s; r½s� ¼ H1½s�

(
; ð10Þ

where H[s] is H restricted to s.
To determine the hidden state transition probabilities, recall our prior on H in

Eq. (5). We may equivalently model this distribution H as a Markov chain, with
transition probabilities:

P½H½siþ1�jH½si�� ¼
ρ if H0½si� ¼ H0½siþ1�
1� ρ if H0½si� ≠ H0½siþ1�

�
ð11Þ

These emission probabilities and hidden state transition probabilities are all that
are needed to apply the forward algorithm and determine the β of maximum
likelihood.

Table 4 A toy phasing example on five SNPs: the counts of mutant/reference allele observations for each SNP (left) and the
inferred haplotypes (right), assuming that the differential haplotype expression was β= 0.9.

Allele/
SNP

1 2 3 4 5 Allele/
SNP

1 2 3 4 5

Reference 12 15 79 97 11 ⟶ Reference 0 0 1 1 0
Mutant 92 85 7 4 84 Mutant 1 1 0 0 1
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Likelihood of concordant expression. Here we prove that the intuitively correct
solution (under mild conditions) is that of maximal likelihood. In doing so, we see
the role played by concordant expression, and motivate its use as a probabilistic
measure for determining which SNPs we believe we may phase with high accuracy.

Under a certain set of conditions, we derive H+, a haplotype solution of a gene
g, of maximum likelihood given R0

g , β and ε. Let Cv
s denote the number of reads

r 2 R0
g;s such that r[s]= v where v ∈ {0, 1}. Provided error rates are constant (say ϵ)

and ϵ < 0.5, and assuming a uniform prior distribution (ρ= 0.5), we can show a
solution of maximum likelihood is Hþ ¼ ðHþ

0 ;H
þ
1 Þ, where Hþ

0 ½s� ¼ v such that
Cv
s ≥C

1�v
s . In words, Hþ

0 and Hþ
1 contain the alleles that are expressed the majority

and minority of the time (respectively) at each SNP locus; given sufficient
expression bias and coverage, intuitively, H+ ought to correctly recover the true
haplotypes.

To prove H+ is of maximal likelihood, we introduce the terms concordant
expression and discordant expression. We say R and H have concordant
expression at s if CH0 ½s�

s > CH1 ½s�
s , discordant expression if CH0 ½s�

s < CH1 ½s�
s , and

equal expression otherwise. In words, since we assume β0 > β1, we expect to see
the allele H0[s] expressed more than the allele H1[s] in Rg,s (concordant
expression).

We may now equivalently define H+ as a solution which assumes concordant or
equal expression at every SNP s. Because we assume uniform priors, P½HjR0

g ; β; ϵ� is
proportional P½R0

g jH; β; ϵ� (see Eq. (3)), and since each read is of size one, we can
factor across Sg in the following way:

p½RjH; β; ϵ� ¼
Y
s2Sg

P½Rg;sjH½s�; β; ϵ�: ð12Þ
Therefore, to show H+ is of maximal likelihood, it only remains to show that

concordant expression is at least as likely as discordant expression, as intuition
suggests. Let γi= βi(1− ϵ)+ (1− βi)ϵ, then as in Eq. (7) we may deduce

P½Rg;sjH½s�; β; ϵ� ¼
Y

i2f0;1g
γC

Hi ½s�
s

i : ð13Þ

Let H� ¼ ðHþ
1 ;H

þ
0 Þ, the opposite of H+. We can now compare the likelihood

of concordant (or equal) expression at s(H+[s]) with that of discordant (or equal)
expression at s (H−[s].) For ease of notation, let vi ¼ Hþ

i ½s� and wi ¼ H�
i ½s�. Then:

P½Rg;sjHþ½s�; β; ϵ�
P½Rg;sjH�½s�; β; ϵ� ¼

Q
i2f0;1gγ

C
vi
s

iQ
i2f0;1gγ

C
wi
s

i

¼ γC
v0
s �C

w0
s

0

γC
w1
s �Cv1

s
1

¼ γ0
γ1

� �C
v0
s �Cv1

s

≥ 1 ð14Þ

The rightmost equality results from the fact that Hþ
i ¼ H�

1�i , and hence vi= w1−i.
Since ϵ < 0.5, we have γ0 > γ1; Cv0

s � Cv1
s ≥ 0 by the definition of H+, which proves

the inequality.
Having shown that the solution of maximal likelihood under mild conditions

is, intuitively, that which has concordant expression at each SNP locus s, we
now measure the probability of concordant expression at that SNP, and only
phase when that probability is sufficiently high, in order to determine which
SNPs can be phased with high accuracy. This probability of concordant
expression can be immediately derived from Eq. (14). We assume a uniform
error rate of ϵ for ease of notation, though is not required. Let CE(Rg,s, H[s])
denote the event of concordant expression at s, then

P½CEðRg;s;H½s�Þjβ; ϵ� ¼ P½Rg;sjHþ½s�; β; ϵ�
P½Rg;sjHþ½s�; β; ϵ� þ P½Rg;sjH�½s�; β; ϵ� ¼

1

1þ γ1
γ0

� �jC0
s�C1

s j

ð15Þ
Furthermore, given N reads, an expression bias β, and a constant error rate ϵ, we
compute likelihood of concordant expression using the standard binomial
distribution B(N, γ0) by equating successes in the binomial model to
observations of the majority allele, expressed with bias γ0 (recall γi takes errors
into account):

P½CEjN; β; ϵ� ¼
XN

i¼dNþ1
2 e

N

i

� �
γi0γ

N�i
1 ≥ 1� e�N 1

2pðp�1
2Þ

2

ð16Þ

To obtain the bound on the right hand side, apply the Chernoff bound

P½X < ð1� λÞμÞ� ≤ e�
λ2μ
2 , where X corresponds to the number of successes and μ

= E[X]= Nβ. This bound shows that the probability of concordant expression
increases exponentially with the coverage (N).

We remark for large N, the Binomial Distribution B(n, β) converges to the
normal distribution NðNβ;Nβð1� βÞÞ, and therefore this probability can always
be easily computed.

Likelihood of non-biased expression. Now that we have a method for deter-
mining the likelihood of concordant expression, we can require any SNP loci to
have a sufficiently high probability of concordant expression in order for HapTree-
X to attempt to phase that SNP. The likelihood of concordant expression is
dependent on β however, which we may only estimate. We therefore also require
that for any gene g to be phased by DASE (or, alternatively, particular SNP s), the

DASE within the gene (at s) must be sufficiently unlikely to have been generated by
uniform DHE (β= 0.5) (because in this case, we cannot use DASE-based methods
to phase).

We compute an upper bound on this probability using a two-sided binomial
test applied to total allele counts m, M, where

m ¼
X
s2g

minðC0
s ;C

1
s Þ andM ¼

X
s2g

maxðC0
s ;C

1
s Þ ð17Þ

for the case of a gene g. For a single SNP s, we write

m ¼ minðC0
s ;C

1
s Þ andM ¼ maxðC0

s ;C
1
s Þ: ð18Þ

The likelihood of at least M heads and at most m tails is computed below. Let
N=m+M, then the upper bound based on the two-sided binomial test is

Xm
i¼0

N

i

� �
1
2

N

þ
XN
i¼M

N

i

� �
1
2

N

: ð19Þ

As mentioned above, the Binomial distribution Bðn; 12Þ converges to the normal
distribution NðN2 ; N4Þ, and therefore we may efficiently compute these likelihoods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The complete experimental pipeline, the relevant software, and the relevant data
download links are available in the Jupyter Notebook format at http://haptreex.csail.mit.
edu and https://github.com/0xTCG/haptreex/.

The RNA-seq sequencing data for GM12878 (nucleus, cytosol and whole) and K562
cell lines are available through ENCODE project (track wgEncodeCshlLongRnaSeq;
the exact accession IDs are listed in the Supplementary Note 2). 10× samples (NA12878
and NA24385) are available from 10× Genomics de novo Assembly collection
(Supernova 2.0.0; https://www.10xgenomics.com/resources/datasets/). Whole exome data
are available in BAM format through 1000 Genomes Phase 3 (ID: NA12878, version:
20121211). The GIAB RNA-seq data (NA12878, NA24143, NA24219, NA24385, and
NA24631) are available for download at http://haptreex.csail.mit.edu/datasets. NA12878
WGS sample (BAM and VCF) is available through Illumina Platinum Genomes project
(gs://genomics-public-data/platinum-genomes). The validation VCFs datasets are
available through the Genome in the Bottle project (https://github.com/genome-in-a-
bottle/giab_latest_release). GEUVADIS samples are available through 1000 Genomes
project; the exact accession IDs are listed in the Supplementary Note 2.

All relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding author upon
reasonable request.

Code availability
The HapTree-X software is free and open source and is available at http://haptreex.csail.
mit.edu.
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